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ABSTRACT

This thesis presents an exploration of the application of multigrid/multilevel

techniques to a non-geometric long transportation problem. An introduction to multigrid

is given, and specifics of how it is applied to this minimum cost network flow problem

are explored.

This research shows that multilevel techniques can be applied to network

optimization problems. Further, since a previous restriction is removed by transferring

the problem from a physical space to a cost space, the techniques can be applied to a

broader range of problems.

Both a multilevel V-cycle and a Full Multigrid (FMG) algorithm are implemented.

Various strategies for restriction and local relaxation are discussed, and comparisons

between the methods are made. Experimental results are given. Directions for future

work include investigation of graph theoretic aspects of the problem, implementation of

a regular grid overlay of the domain, exploration of a fast adaptive composite (FAC) grid

algorithm, and development of a full approximation scheme (FAS) algorithm.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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1. INTRODUCTION

A. NETWORK OPTIMIZATION

Optimization problems occur frequently in the areas of transportation, manpower

planning, industrial engineering, production, resource allocation, and ryany others.

Optimization problems of the form

Minimize car
Subject to: Az=-b

are known as linear programming problems (Nemhauser and Wolsey, 1988). Minimum

cost network flow problems are a specialization of linear programming optimization

problems, characterized by having a one-to--one correspondence with a digraph

consisting of a set of nodes or vertices, and a set of directed arcs or edges joining pairs

of nodes.

Many problems arise in connection with network flows. They include finding the

shortest path between any two nodes, finding the minimum cost flow which meets all

constraints, determining the maximum amount of flow that a capacitated network can

accommodate, finding a path which visits all nodes in the network exactly once (a

Hamiltonian circuit), or finding the shortest such path (the classical traveling salesman

problem).



Some network flow problems, such as the traveling salesman problem, are NP-

complete. That is, they belong to a class of hard problems for which no polynomial time

algorithms are known. Polynomial time algorithms exist for solving some of the others,

such as the shortest path problem, depending on the parameters of the problem. The

shortest path problem with mixed sign arc lengths, for example, is NP-complete.

(Bazaraa et. al., 1990). The transportation problem, which is addressed in this thesis, is

not NP-complete, however, in developing the application of a technique such as multigrid

to a new class of problems, working on a problem such as t'is is a necessary first step

before proceeding to more difficult ones.

The list of applications of network flow problems is quite extensive. Military

applications range from scheduling ships for underway replenishment, to interdiction of

precursor chemicals used in illegal drug production. Civilian applications include

scheduling oil tanker deliveries, airline crew schedules, and personnel assignment models,

among many others. The interest in network problems, and the potential benefits of

improved solution methods, are enormous.

B. MULTIGRID AND MULTILEVEL TECHNIQUES

Multigrid and multilevel techniques were originally developed for solving partial

differential equations numerically and have been applied successfully to a growing

number of diverse problems. In general terms, these techniques work best on problems

where traditional iterative methods show great initial improvement, but later stall. Achi

Brandt, one of the developers of multigrid, said that "stalling numerical processes must
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be wrong" (Brandt, 1984). Multigrid methods are most effective when local information

must be propagated globally. That is, when a local operation, such as a partial derivative

or a change in flow on an arc, has global impact on the problem, there is potential benefit

from a multilevel approach.

There are some superficial similarities between the partial differential equations for

which multigrid was originally developed and network flow problems. Changing the flow

on an arc, like taking a partial derivative, is a very local operation. It is performed on

that arc alone. The arc, however, like a point in the domain of the PDE, does not exist

in a vacuum, and changing the flow on that arc will require changes on many other arcs

in the problem. Multigrid excels at spreading this local information throughout the

domain of the problem. Because of these similarities, and because of the potential gain

from multigrid, this approach is worth researching.

Some work has been done in applying a multigrid approach to optimization and

network flow problems, mostly at the Weizmann Institute of Science in Rehovot, Israel

(Brandt, Ron, and Amit, 1985; Ron, 1987). Of particular interest is a master's thesis on

a multilevel approach to the long transportation problem (Kaminsky, 1989). This work

provided background and a starting point for this thesis, and is described briefly in

Chapter III.

The goal of this thesis is to expand on the work done at the Weizmann Institute in

applying multilevel techniques to optimization by removing one of the restrictions placed

on the long transportation problem by Kaminsky (1989). Also, a comparison of

multilevel techniques to more traditional network optimization methods is made.

3



C. THESIS OVERVIEW

The organization of this thesis is as follows: Chapter H will define the

transportation problem and address the traditional methods for solving it, including the

simplex algorithm and a network simplex algorithm. Chapter HI will give a brief

introduction to multigrid and multilevel methods, including the background of the

techniques from their origins in partial differential equations, and a discussion of some

previous work in applying multilevel methods to the transportation problem. Chapter III

will also introduce some notational conventions used in discussing multilevel methods.

Chapter IV discusses the first phase of the current research. This chapter includes

the basic building blocks of a multigrid algorithm, the specific relaxation and interpolation

strategies and how they are applied to the transportation problem. Also, this chapter will

describe how one of the restrictions which was necessary in previous work, was removed.

The removal of this restriction allows the application of the multilevel techniques to a

large class of problems that could not previously be treated by such methods.

Chapter V is concerned with more advanced multilevel techniques and questions,

including the application of a full multigrid (FMG) algorithm and experimentation with

several local relaxation methods. Some new coarsening strategies are also discussed.

Chapter VI contains conclusions and recommendations for further research, and the

FORTRAN code implementing the algorithm is contained in the Appendix.

4



II. TRADITIONAL METHODS

A. SIMPLEX ALGORITHM

The transportation problem is among the simplest of network flow problems. It is

posed on a bipartite graph, consisting of a set of M supply nodes, a set of N demand

nodes, and a set of arcs each connecting a supply node to a demand node. Each supply

node i has a fixed amount ai of a commodity which it can provide. Each demand node

j has a fixed requirement bi for that commodity, and each arc (ij) connecting supply node

i to demand node j has a cost per unit flow ci associated with it. The transportation

problem has been called the 'white laboratory rat' of network optimization problems.

Because of the simplicity of its structure, new algorithms are first tested on it before

being applied to more complicated problems.

If the total supply equals the total demand, the problem is balanced. An unbalanced

problem can be transformed into a balanced problem by the addition of a dummy node.

When M<<N, the problem is referred to as a long transportation problem. Denoting the

flow on arc (iQ) by x,,, the transportation problem can be expressed as: given a, b, and

c, find x to

Minimize z- =•. -lciJX1J
Subject to: El.1xlj=a1  Vi

rinx 1mt=bi Vj

or, in matrix notation,

5



Minimize z=c'x
Subject to: Azr=-b

Z:kO

where b is an (M+N)-vector whose first Mt entries are the available supplies at nodes S,

through SH, and whose last N entries are the required demands at demand nodes D,

through DN. Let K be the number of arcs in the problem. The K-vector x is composed

of the flow on the arcs, and the vector c is the cost of those arcs. The matrix A has as

many rows as there are nodes in the problem, M+N, and as many columns as there are

arcs. Each column of A is associated with an arc of the problem, and they are arranged

in an order that matches the order of c and x. Each column has exactly two non-zero

entries: a +1 in the row corresponding to the supply node of the arc, and a -I in the row

corresponding to the demand node. Each row of A is associated with one of the

constraints of the problem (Bazaraa, et.al., 1990). A small example problem is shown

in Figure 1, for which

3 2' 110 00 00 0
4 1 is 0 0 0 1 1 1 0 0 0

3 6 10000 0 00 11 1
z=10 _a .~ and A= 0 0 0 0 0 0

- 1 0 -1 0 0 -1 0 0
5 0 -
3 J 0 0 -1 0 0 -1 0 0 -1.

Note that x in this case is only one of many possible flow combinations, and does not

represent an optimal solution.
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12 (,)-8

15 ( -20

10 -9
(cost flow)

Figure 1. A Small Transportation Problem with Flows

Since the matrix A is rank-deficient (Nernhauser and Wolsey, 1988), an artificial

or root arc is added to the problem by augmenting A with M+N standard basis vectors

e, through em.A. The new matrix A can be partitioned A = [B N], rearranging columns

if necessary, where B is a square matrix, (M+N by M+N), with linearly independent

columns, referred to as a basis or basic matrix. Since B has full rank, there exists a

transformation matrix Z such that BZ = N.

Associated with every basis B is a unique vector t, such that Bt=b. Appending

to this an appropriate size zero vector creates a basic solution, xi. If all elements of x"

7



are greater than or equal to zero, x' is a basic feasible solution. Any solution which

satisfies the constraints, Ax=b, can be rewritten as

[is r []•=Bx + M,, = b.

A basic feasible solution corresponds to an extreme point of the feasible region

defined by Ax=b. Since the transportation problem is a specialization of the linear

programming problem, if a finite optimum solution exists, one will occur at an extreme

point. In network flow problems, arcs which have positive flow at an extreme point are

associated with a corresponding x.. The M+N arcs in x. (including the arcs to the root),

constitute a rooted spanning tree for the graph, called a basis tree, and the optimal

solution is the spanning tree with least cost.

Any feasible solution x can be written in terms of a basic feasible solution, *, and

the nonbasic variables x.. Since N = lZ, NxN = BZxN, by substitution Bx,+BZxr=b.

Solving for xy gives x. = B'b-ZxN=*-ZxN, since *=B'b.

Partitioning the cost vector c to conform with A, i.e., a= [Ca' cw] r , the objective

function value for the current solution x can be expressed as
c z= (.,V ,] iz, Zr]T

- + Vibr

= Car (*-Fzj) + airxir
= a42-a,'Zx.+a 1 'Z,

O c't+ (cf-c ,Z) Z,

;c,'.+ ( ra;-u rg X.

where a, sometimes referred to as the vector of dual multipliers, is the solution to the

equation uTB = c,T.
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Since xN equals 0 at an extreme point, flow on the non-basic arcs can only be

increased. This means that the objective function value of the current solution can be

improved only if there is a column of N, say N1, such that ck-urN < 0, where ck is the

k th entry of C,. If such a column exists, then the current extreme point may not be the

optimal one, and an improved solution may be found by moving to an adjacent extreme

point. This is accomplished by bringing the non-basic arc corresponding to N, into the

basis, and removing one of the arcs currently in the basis. This operation is known as

pivoting.

The simplex method can be summarized as follows:

1. Start from an basic feasible solution, using artificial arcs if necessary.

2. Price out non-basic variables. By computing cl-urNk, the reduced cost of arc k.

3. If an variable is found with a reduced cost less than 0, perform a ratio test to
determine which variable will leave the basis, pivot the new variable into the
basis, and return to step 2.

4. If no non-basic variables have a reduced cost less than 0, the current solution is
optimal.

B. PRIMAL NETWORK SIMPLEX METHOD

A traditional method for solving the transportation problem is a primal network

simplex algorithm. In this approach, an initial basic feasible solution is found by starting

with an artificial basis. That is, an artificial node and an arc from every real node to this

artificial node are added to the problem. These artificial arcs are used as an initial basis,

with an extremely large cost associated with each arc. This cost is large enough that the

9



algorithm will try to remove these arcs from the basis as quickly as possible. Once an

artificial arc is removed from the basis, it is removed from the problem. Once all

artificial arcs have zero flow, feasibility has been achieved.

One example of a network simplex algorithm is GNET, developed by Bradley,

Brown and Graves (1977). A brief introduction to GNET is in order at this point for two

reasons. First, an understanding of the traditional approach exemplified by GNET will

help to clarify the differences in a multilevel approach. Second, during the first part of

the current research, multilevel techniques were used as a way of producing a feasible

starting solution for GNET, rather than the artificial basis which is normally used.

GNET uses a set of extremely efficient data structures to represent the necessary

information about the problem. Since in most problems the number of arcs greatly

exceeds the number of nodes, storing the graph in the form of an explicit arc list, or an

adjacency matrix, is very wasteful. GNET uses a reverse star storage scheme to limit the

amount of storage required. Three K-length arrays and two (M+N)-length array are used

to describe the network. The K-length arrays are T, which stores the tail node of each

arc; C, which stores the associated cost, CP, which stores the associated capacity.

Supplies and demands are stored in an M+N length vector X. Arcs with a common head

node are stored contiguously, and the entry point for each group of arcs is stored in H,

the (M+N+1)-length head array.

The network simplex algorithm as implemented in GNET works on the spanning

tree defined by the basic arcs. The price-out step is performed by comparing the cost of

each non-basic arc (ij) to the difference between the duals of the supply node and the

10



demand node it connects. Call these duals ui and u,. Because of the structure of the

matrix N, uTN& is always equal to u1-u,, where Nk represents the arc from supply node i

to demand node j. Therefore, the reduced cost of arc (ij) is c,;(u,-u,). If this arc prices

out favorably, that is, if the reduced cost is less than zero, it is considered for entering

the basis.

The introduction of any new arc (iQ) into the basis tree will create a cycle consisting

of (iQ) and the nodes on the paths from i and j towards the root, until the two paths reach

a common node, called the join. Duals of some of the successors of the join will change

after the pivot, but the flow will change only on the arcs within the cycle. Specifically,

flow will increase on those arcs pointing in the same direction around the cycle as the

new arc, and decrease on arcs which point in the opposite direction.

The primal network simplex algorithm is, then

1. Start from a basic solution, using artificial arcs " necessary.

2. Compute the duals for all nodes in the problem with the current solution. That
is, solve uTB = cT. Since B can be made triangular through elementary row
operations, this equation can be solved by starting at the root node and working
out towards the leaf nodes.

3. Price out non-basic arcs to compute the reduced costs, c#-(u1-u,). If any reduced
cost is negative, pivot an arc with negative reduced cost into the basis and return
to step 2.

4. If the reduced cost of all non-basic arcs is greater than 0, current solution is
optimal.

11



GNET does not strictly follow the above procedure. After a pivot, new dual multiplier

values are computed through a more efficient update process. For more details

concerning the working of GNET, see Bradley, Brown and Graves (1977).
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II1. AN INTRODUCTION TO MULTILEVEL METHODS

Much of the theory of multigrid and multilevel methods comes from their

development as methods for solving partial differential equations (PDEs). Applications

of multilevel methods have expanded beyond their genesis in PDEs, however, and

understanding the roots of multigrid provides insight into the reasons behind taking the

multilevel approach.

One method of solving partial differential equations numerically is to discretizt the

problem over a finite number of discrete points in the domain, and then to approximate

the continuous derivatives in the PDE by discrete finite differences. This leads to a linear

system of many equations in many unknowns. Since the finite difference approximations

use only the values from near neighbors of a point, the resulting matrix equations are

banded and extremely sparse.

To solve this system of equations, Ax = b, one approach is to use some sort of

iterative process xi-'I = GxA, where G is an iteration matrix designed to start at an initial

estimate, say x., and ultimately converge to the exact solution, x. After several iterations,

an approximation, x"'", to the exact solution is reached.

There are two measures for how good an approximation x"w) is. The first is the

error, which is the difference between x and xl'•; that is, the difference between the

exact solution and the approximation. In practice, however, the exact solution is not

known and so the error is as difficult to determine as the solution. The second measure

13



is called the residual, ' b - Ax(*w), which is a measure of by how much the

approximation fails to satisfy the system of equations. This is a much more useful

measure in practice.

Any vector on a grid with N-I internal gridpoints can be represented as the sum of

N+I vectors v, = sin (jknlN), j=O, ,...,N, k= ,2,...,N-1, wherej is the associated gridpoint

of v, and k, the wavenumber of the mode, is the number of half sine waves in v over the

domain of the problem. These vectors, the Fourier modes, form a basis for the vector

space. That is, any vector, including the error vector, can be expressed as a linear

combination of the Fourier modes. A Fourier mode with a low wavenumber will consist

of long, smooth waves. A large wavenumber indicates a highly oscillatory wave. Note

that the number of modes necessary to span the domain of the problem is dependent on

the number of gridpoints (Briggs, 1987).

If we call the error e, it follows that

Ae•'-' -f A (x - x"*')
= Ax - Ax")
=- b - Aix"nw

= I-

In theory, if the error vector could be found from this equation, it could be added

to the approximate solution to yield the exact solution to the original system. Again, in

practice the benefit from this observation is of limited use. The residual equation, as this

equation is known, is just as difficult to solve as the original equation.

This does not mean, however, that the residual equation is useless. While we may

know very little about the characteristics of the solution to the original problem, we know
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that after a few cycles of an iterative process, for many problems, the error of an

approximation will be smooth. As will be demonstrated, this property is critical in a

multilevel approach to solving this system of equations (Briggs, 1987).

A. PDE EXAMPLE

A model problem will help to filustrate the multigrid algorithm and the advantages

gained from a multigrid approach. The model problem is a second order differential

equation boundary value problem on the unit interval in one dimension,

-u"1(z) +ou(x) =f(x), O<x<l (oO> is a given constant), subject to the boundary

conditions u(O) = u(1) = 0. (Briggs, 1987).

One approach to solving this problem is to divide the domain of the problem,

I z: 0<a2. ) into N subintervals, each of width h = I/N, by creating N+I gridpoints

x, = jh, j = 0,...,N. This is the finest grid, which is referred to as f?. Grids in which the

spacing between gridpoints is increased are referred to as coarser grids, denoted by Wh,

fe, etc. The coarsest grid will be denoted &?•. In order to reduce notational complexity,

two conventions will be introduced. First, the disciete vector v(x) is used to replace the

continuous function u(x) as a reminder that the problem has been discretized. Secondly,

vj is used as shorthand for v(x1) = v(j,), andfj is used as shorthand forffx). By replacing

the second derivative in the original problem by a second order finite difference

approximation, the differential equation is approximated by the second order difference

equations +j1+rv,++VJfj I Vo = VN = O, for j=l,2,...N-1.
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Since the above difference equation must be satisfied at each interior grid point, this

discretization results in a system of N-I equations and N-I unknowns. In matrix form,

this system can be expressed as

2+0 -1 0 0 0 ... 0 0 0 0 "1 1

-1 2+a -1 0 0-.-0 0 0 0 V2 f2

O -1 2+a -1 0 ... 0 0 0 0 V3  f3:_ % ". . - ". .. %" -. . ". . : =.

0 0 0 0 0 - 1 2+a -1 0 vn_3 f.-3
0 0 0 0 0 - 0 -1 2+a -1 vn_2 f,-2
0 0 0 0 0 ... 0 0 -1 2+0 vn-x f,-Ij

Calling the above matrix A, this can also be expressed as (11h 2)A v = f. The matrix A

is tridiagonal, symmetric, and positive definite, of dimension (N-1) by (N-1).

From a given current approximation, a Jacobi iteration for solving this system of

equations solves the ith equation for the ith unknown. For example, if v""Id) is the current

approximation to the solution, and v("e) is the updated approximation, a Jacobi iteration

step would give Vj1 2+1 (h2ff1 +va) +v1 a~m) ,and a Jacobi sweep consists2+0

of one pass through all N-I equations. The generic term for an iterative sweep such as

this is a relaxation.

To gain some insight into how the Jacobi method works, and to see what benefit

is gained from a multigrid approach, assume for now that f(x) = 0 and Y = 0. That is,

solve the homogeneous differential equation u. = 0. The advantage of this is that the

exact solution, u(x) = 0, is known, and the error in any approximate solution v is simply -
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v. In particular, the size of the initial guess is the same as the initial error, and we can

watch how it evolves.

Consider an initial approximation consisting of a single Fourier mode. That is, v

is a vector whose 1 h component is sin Jk• j=1..N-1 , where k is the wave number

of the mode. Applying a Jacobi iteration to it produces an interesting result. If the mode

is in the high end of the spectrum (i.e., k > N12), then the error is reduced quickly. If the

mode is in the low end of the spectrum, very little error reduction is achieved.

If an initial solution consisting of a combination of Fourier modes is used, after

only a few iterations the high frequency modes of the error are almost completely

removed, while the low frequency modes are relatively untouched. The result is that the

error is 'smooth', consisting only of low frequency sine waves. Faced with this smooth

error, a local operator like a finite difference approximation is unable to advance quickly

towards the exact solution.

Multigrid algorithms attack this problem by transferring the problem from a grid

where the smooth nodes are low frequency to one where they will appear to be higher

frequency. If the grid spacing on an interval is doubled, then the number of modes

recognizable on that interval is halved, so a Fourier mode which is in the low end of the

spectrum when there are N-I possible modes, will move towards the higher end of the

spectrum when the possible values only go up to N12. This is demonstrated graphically

in Figure 2, where the k=16 mode appears to be higher frequency on the coarse grid

(cycling every four points) than on the fine grid (where it cycles every eight points)

(Briggs, 1987).
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Figure 2. High Frequency Wave Appears Low Frequency on
Coarser Grid

B. COARSE GRID CORRECTION AND THE MULTIGRID V-CYCLE

The following notational conventions will be used to distinguish between different

iterations and levels during the multilevel process. In the case of discrete variables,

functions and matrices, superscripts are used to indicate which multigrid level they apply

to. For example, if the grid spacing on the finest level is h, then variables on this level

would have the superscript h. The next coarser level will have the superscript 2h. (This

assumes a 2:1 ratio of the grid spacing. Subscripts of scalar quantities denote vector
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index, as in v1  Vectors and matrices will be denoted by bold print. Variables and

functions with no superscripts or subscripts are continuous.

During the course of the multilevel algorithm, the problem is address.ed on various

scales, as indicated in the previous section. In doing this, many parameters of the

problem, including the current estimate of the solution, the error, the right hand side

vector, and the finite difference operator A are transferred from fine grids to coarse grids

and back again. The act of transferring to a coarse grid from a fine grid is called

restriction. Transferring to a fine grid from a coarse grid is known as prolongation, or

interpolation. The letter I indicates either an interpolation or restriction operator. For

example, *h=. '*lab indicates that eh is the interpolation (from Ih to W) of the

vector e`*. Likewise, *2h=h.r h is the restriction of the vector e' from W? to 2h.

Notice that the subscript of the operator and the superscript of the operand must agree,

as do the superscript of the operator and the superscript of the result (Brandt, 1984).

In general, any error vector may be composed of error components at many

frequencies, from very high (oscillatory) to very low (smooth). The multigrid approach

is to treat each component of the error on a grid where it appears to be high frequency.

For the partial differential equations which multigrid was initially designed to solve, the

components of the vector x? are neighboring elements of a discretized function. This

discretization could be thought of as sampling the continuous function in some way, and

either taking the value of the function at a point, or accumulating the value over a specific

region. On successively coarser and coarser grids, the distance between neighboring
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sample points is increased, and the function values at the grid points carry information

for larger portions of the original domain.

The error of any approximation can be decomposed into a finite sum of Fourier

modes on a finite grid. Only modes with a wavelength between 2h and 2Nh can be

represented on a grid with N+I gridpoints (including the endpoints) and a grid spacing

of h, and these modes are the Fourier modes with wavenumbers 1 through N. The highest

frequency component oscillates over the wavelength 2h. Sine waves of higher frequency

would appear as lower frequencies through a process called aliasing. A simple

demonstration of this process is observed in movies, when a rapidly spinning wagon

wheel appears to be spinning slowly, or backwards, because the discrete sampling

frequency of the camera is slower than the actual frequency of the wheel. Similarly, the

lowest frequency component which can be represented is that which has a wavelength of

twice the interval length, that is, the one which completes half a cycle in the number of

sample points in the interval.

A Fourier mode on the fine grid, when transferred to a coarser grid, will have the

same wave number as on the fine grid (Figure 2). However, since only half as many

wave numbers can be represented on the coarse grid, this same mode will be on the high

end of the spectrum on the coarse grid. That is, the error which was smooth on the fine

grid appears to be high frequency on the coarse grid. The iterative method applied on

this coarser grid will reduce the remaining error as if it were actually the high frequency

component.
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The concept of transferring the problem to a grid on which the smooth error will

appear to be high frequency, further reducing the error by iteration (relaxation), and then

interpolating a correction back to the original level, is known as the coarse grid

correction scheme. This algorithm for finding a solution to Ax=-b can be expressed as

follows:

1. Starting with an approximate solution x., run a few iterations on the fine grid, to
produce the approximation x?. This process is called 'relaxation'. After very few
iterations, the error is smooth.

2. From the above relaxation, compute the residual, rP - bh-Axt.

3. Transfer re to the next coarser grid, -2h=Xh"=r-hz

4. Solve Aa&a2h=zah on the coarse grid. Because this problem is on the coarse

grid, with fewer data points, this operation requires fewer arithmetic operations
than on the fine grid.

5. Interpolate e"' back to the fime grid as an estimate for ek and correct the estimate

by jz--jz+xAe*2h . Since e" is smooth as a result of local relaxation, then e2k

is a good estimate for it. (Briggs, 1987)

Of course, this algorithm begs the question of how to solve A 2h021=Z2h on the

coarse grid. The answer is that the procedure can be applied recursively, until ultimately

a coarse enough grid is reached where the solution is readily available. On the coarsest

grid possible, the problem is simply a single equation and a single unknown, and solving

this requires only a single floating point operation. The process of relaxation, restriction,

relaxation, etc., until the coarsest grid is reached, followed by interpolation, correction,
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relaxation, interpolation, etc., until returning to the finest (original) grid, is known as a

V-cycle, and is the simplest of multigrid schemes (see Figure 3).

Three important points should be made about the coarse grid correction V-cycle.

The first is that, at all but the finest grid level, the scheme works on the residual equation,

not the original equation. The reason that this is important is that, after a few relaxations

of an iterative solver, the error will be fairly smooth, and therefore may be accurately

represented on the coarse grid. No such claim can be made about the approximate

solution to the original equation (Brandt, 1984).

The second point is that at every level of the coarsening process, relaxation steps

can occur. The result of this is that the various components of the error are being

attacked on the most appropriate level, and that, by the time the coarsest level is reached,

all components of the error have been reduced.

Finally, although it may appear at first that the structure of the V-cycle is adding

significantly to the work of the problem, it must be remembered that at each deeper level

of the V, the problem being solved is getting smaller and smaller. The result of this is

that, typically, the total work done in a single V-cycle is on the order of two to three

times the work of a single relaxation sweep of the iterative solver, and the results are

greatly improved.
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Figure 3. Multigrid V-Cycle
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C. NESTED ITERATION AND THE FULL MULTIGRID (FMG) CYCLE

The second element which, together with coarse grid correction, constitute multigrid

is known as nested iteration. The idea behind nested iteration is that the better the

approximation is at the beginning of a V-cycle, the better the end result will be. To

obtain a good initial solution, one can first solve the problem on the next coarser level

and interpolate the solution to the original level. This approach is efficient in that the

cost of computing an initial solution is small, since the problem on the coarse level is

much smaller than the original problem.

In the Full Multigrid (FMG) Scheme, the problem is solved on the coarse level by

performing a V-cycle starting on that level. V-cycle implies returning step by step to the

coarsest grid, and then back up to the current level. This idea is applied recursively, so

that in order to get a good initial estimate for this coarse level the problem is solved by

running a V-cycle starting on the next coarseT level, and so forth down to the very

coarsest level. The (FMG) scheme incorporates both nested iteration and the coarse grid

correction. A statement of the algorithm is as follows:

1. Start on the coarsest level. Since the problem on the coarsest level is very small,
it can usually be solved directly.

2. Interpolate the solution to the next finer level and relax a few iterations on the
original equation.
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3. Perform a V-cycle from this level, working on the residual equation.

4. If on the original (finest) level, stop. Otherwise, return to step 2. (Brandt, 1984)

in other words, each V-cycle is preceded by a smaller V-cycle which starts at a

coarser level, as shown in Figure 4. The purpose of relaxation after interpolating to a

higher grid level is that, in most cases, interpolation will introduce a small high frequency

error into the approximation. However, since relaxation methods eliminate high

frequency error quickly, one or two iterations are sufficient to remove this error.

h

4h

Sb

S16h

Figure 4. Full Multigrid (FMG) V-Cycle

D. THE FULL APPROXIMATION SCHEME (FAS)

The arguments for the coarse grid correction scheme do not carry over directly to

nonlinear problems. If N is a nonlinear operator and NA its' representation on the fine
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grid, f the right hand side vector, u the exact solution and v the approximate solution to

the equation Nhu-h=f h , then the residual, r is defined:

Zh=f hiShvb
=NhUb= NhVh.

Note that in general, huh-Bh'*VhI.N& (uh -vh) , since a nonlinear operator such as

N is not distributive. However, uk-v--eh, so, in contrast to the linear case, NXhuhoz .

Note that the error e does not solve the same set of equations as the solution v when the

right hand side is replaced by the residual.

For this reason, the fidl approximation scheme (FAS) was developed. Let N be the

nonlinear operator in the equation Nu=f. Define v2h=IXhv, to be the restriction of the

approximate solution v,. The residual, -I"j - N/vh, is the difference between the original

right hand side, Jt, and the nonlinear operator acting on the approximate solution, vh.

Finally, define Z'Jk=X'2h(fh-Nb-Jhv) to be the restriction of the residual. The residual

is the difference between the operator acting on the exact solution and the operator acting

on the approximate solution, so f &-NXhYE=N&u "-Arv . This equation is analogous

to the residual equation used in the FMG cycle. Transferring this

residual to the 2h grid gives .,•" (Cf -Jh hVb) =jrUu"-A?'vh . Using v2h••vb" ,

this becomes rhU21=_Xf6h+2h(hJv'h) -X"(,hvh) . Observe that this is the

coarse grid version of NIuA=t, but that a correction term, namely

&-h 0A (.Ivb) -. ahNhvh , is required due to the nonlinearity. Formally, solving

for us gives u2h=(•ah) -1 (Iaa(fNb-rhvht) +÷n2 v) . In other words, the coarse
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solution is the inverse coarse grid operator acting on the sum of the restricted residual and

the coarse grid operator acting on the coarse approximation.

However, u"" is the full solution on the coarse grid, (hence the name, full

approximation scheme), and we only desire the correction, uZ2-v2A. To get the correction

and update the approximate solution, we take

-h,x 2uh--X3 hv).

The important differences between FAS and the previous multigrid schema is that

N(uzh) is approximating the solution on the next coarser grid, not the error. A statement

of the FAS algorithm is as follows:

1. Relax on the fine grid to get an approximation to the solution, vA.

2, Restrict the right hand side to obtain f2a,

3. Restrict the approximate solution and apply the operator to it to

find Nab ("•hVh) . Apply the operator to the fine solution and restrict the result

to find I."(Nhvh) . Compute 'k=Na"(Ihvh) -"(N¢v") and add it

to f£a

4. Solve j"2hu2h""2h+7,,a to find u2,.

5. Subtract the restricted initial estimate e2h from u"', and interpolate the result to the
fine grid.

6. Add the correction to the original approximation, vJh-v"+ h (uZ 2 2-hV)

(Brandt, 1984)
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To solve the problem in step 4, the above scheme is applied recursively. As with

the coarse grid correction scheme of the linear case, FAS is used recursively until the

coarsest level is reached and the problem is easy to solve. Nested iteration is also used

to create an FAS-FMG scheme.

E. MULTIGRID APPROACH TO THE TRANSPORTATION PROBLEM

Kaminsky (1989) wrote a Master's thesis at the Weizmann Institute of Science in

Rehovot, Israel, under the guidance of Prof. Achi Brandt. The premise of the thesis was

that multilevel techniques, which had been developed in relation to partial differential

equations, and which had been applied with success to a growing number of areas, might

be able to provide an improved solution method for optimization problems in general, and

specifically, to the long transportation problem.

An optimization algorithm which most closely resembles a multilevel algorithm is

aggregation/disaggregation, in which nodes are aggregated in a logical way in order to

reduce the size of the problem, and the solution to the smaller problem is disaggregated

to provide either an initial estimate or a bound for the solution to the original problem

(Zipkin, 1980). The algorithm Kaminsky developed differs from this method in that his

work extends the algorithm from a two level approach to a multilevel approach. That is,

aggregated nodes are aggregated again, and again, until a problem which is trivial to solve

exactly is reached. In multilevel terminology, the aggregation process is referred to as

restriction, and the disaggregation is called interpolation.
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Kaminsky required that the nodes in the problem occupy a location in physical

space, and that the cost of the arcs connecting supply nodes to demand nodes obey the

properties of physical distance (i.e., comprise a metric): ci0 for all ij; c,, = 0 only if

nodes i and j are co-located; and CijCik+Ckj for all i, j, k. Such a problem may be termed

a geometric long transportation problem. With this requirement in place, demand nodes

were restricted (aggregated) based on their physical closeness, so that individual demand

points were combined into regional demand centers, and so forth.

Kaminsky's restriction of the problem to those which had a physical relationship

seems to be overly restrictive. Many problems that can be formulated as transportation

problems have absolutely no physical space interpretation. For example, the assignment

problem is a specialization of the transportation problem in which the cost of an arc is

unrelated to physical separation of the connected nodes. In this problem, as well as in

many other manpower or resource allocation problems, physical distance is meaningless.

For this reason, a methodology for relaxing this modeling assumption is developed, as

detailed in the next chapter.
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IV. DESIGN AND IMPLEMENTATION OF THE V-CYCLE

There were three objectives in the first phase of research for the non-geometric long

transportation problem. The first was to develop the control and data structures for

implementing a multilevel V-cycle, i.e., design and program routines for restriction,

interpolation, and local relaxation.

The second objective was to implement a working interface with GNET, which

would be used as a 'black box' solver in the local relaxation phase of the V-cycle

scheme. A subroutine version of GNET (Bradley, Brown and Graves, 1977) was

provided by Professor Gordon Bradley, Naval Postgraduate School, to be used for this

purpose.

The third objective was to perform initial testing of the V-cycle. This testing was

to be very exploratory in nature. Its purpose was to point out ways the algorithm could

be improved.

The first two objectives were met in the first preliminary design. Shortcomings in

this design, as identified while pursuing the third objective, were addressed in the second

phase of the design process.

A. FIRST PRELIMINARY DESIGN PHASE

Prior to addressing the questions of how the basic multigrid operations of restriction,

interpolation, and local relaxation would be implemented, some general design decisions
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had to be answered. First of a1l, Kaminsky (1989) required that the demand nodes occupy

a physical location in space, and that a relationship exist between transportation costs and

distances. In order to overcome this limitation, a change of coordinate axes from physical

space to cost space is performed. For the MxN problem, cost space is the M-dimensional

space in which each of the coordinate axes is the cost of shipping from one of M supply

nodes. Each of the N demand nodes is placed in cost space at the point whose

coordinates are the unit costs of shipping from the supply nodes to it. An example, for

a 2x×6 problem, showing the relationship between physical space and cost space is given

in Table 1, and depicted graphically in Figure 5.

I!..
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Figure 5. Cost Space vs. Physical ,Space

Kaminsky's requirement that a relationship exist between cost and distance is

connected to his method of restriction. He aggregates demand nodes based on physical
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Table I. COST SPACE VS. PHYSICAL SPACE

DEMAND PHYSICAL SPACE COST SPACE
NODE X Y S1 S2

1 12 18 8 18

2 48 36 12 15

3 24 44 15 16

4 36 52 16 18

5 44 68 8 12

6 7 77 9 14

7 19 85 13 i2

8 32 96 18 14

9 85 12 17 15

10 63 25 18 15

11 66 47 17 10

12 72 49 16 8

13 54 64 15 10

14 91 80 20 5

15 95 88 22 4

16 75 91 18 8

closeness, which makes sense if demand nodes physically close to each other have similar

costs. Changing coordinate systems means that demand nodes which are close in cost

space are aggregated directly, insteae of aggregating nodes which are close in physical

space and requiring a connection between distance and cost (see Figure 7 in the next

section) The objective in both cases is to combine demand nodes which have similar

costs of shipping from each supply node. By transferring the problem to cost space, a

more direct path to this objective can be followed.
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Using a cost-space implementation, the dimensionality of the problem equals the

number of supply nodes. One way to lessen the work of any solution method somewhat

is to transform from the original cost-space to a 'reduced dimension' space, and this is

accomplished by subtracting the cost of shipping from one of the supply nodes (which

must be connected to each demand node) from the cost of shipping from each supply

node. The result is that, for one supply node, all the demand nodes map to the origin in

cost space. We can show that while the objective function value is different for the new

problem, a solution for one is equivalent to a solution for the other.

Let the long transportation problem be represented by a bipartite graph G, with M

supply nodes and N demand nodes, and suppose each supply node is connected to every

demand nodes. Let K be the set of arcs in :he problem. Let b be the (M+N) length

column vector whose first M entries are the supplies at the supply nodes and whose

remaining N entries are the negative of the demands at the demand nodes, and let A be

the adjacency matrix of the graph G; that is, each row of A is associated with a node in

G, and each column of A represents an arc of G, such that for every arc k from supply

node i to demand node j, column k of A has a +I in row i and a -l in row M+j. Let c

be the vector whose k th element, k=i+M(j-1), is the cost cj of shipping from node i to

nodej along arc k. If 1 is the index of a supply node which is connected to every demand

node, define e to be the vector whose k th entry is ,4 = c-cb. Then we can prove the

following theorem.

Theorem 1: For the MxN transportation problem, where A, b, c, and
e are defined as above, x is a solution to the problem
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Minimize z = c TxPrbeI
Subject to: Ax=b Problem I

x1O

if and only if it is a solution to the problem:

Minimize z=i 5x Problem 2

Proof: Subject to. Ax=b
XkO.

E TX = Eed
= rEC,- ,x

= >0

= EFr(c-c - e

= Cc Tx -ciXy

But Mx is the total flow on all arcs, which, in the transportation problem is

equal to the total supply, E:,1 b. Therefore,

rx =Tx -cg2~ihr

But cgb, is a constant, independent of x. Therefore, x" is a solution to Problem

I if and only if it is a solution to Problem 2. E

The transformation of the costs to the reduced dimension space is linear in the

number of arcs, and will allow for one fewer coordinate axis to be considered during the

restriction process, since the transformed cost of shipping from supply node I to every

demand node maps to the origin in cost-space. Most notably, the 'reduced-dimension'

problem requires sorting the nodes (an order M log M operation which will be required

during the restriction process) fewer times. Figure 6 is a depiction of the demand nodes
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in the 2 supply node problem of Table I mapped to the one dimensional transformed cost

space. Once the transformation to 'reduced-dimension' cost-space has been performed,

the resulting problem may be solved with no further consideration of the transformation.

Therefore, in the remainder of this work it is assumed that when an MxN problem is to

be solved, it may be the reduced dimension version of a problem that was originally

(M+I)xN.

TRANSFORMED SHIPPING COSTS

Node Number

1 6 5 2 4 3 7 9 10 8 13 11 12 16 14 15

-11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19

Cost

Figure 6. Transformation to Reduced Dimension Space

A general multigrid V-cycle pattern of restrict -- relax -- interpolate was

implemented in the first preliminary design. The first step of the design was to develop

algorithms for each of these operations. Each operation will be addressed separately.

35



B. RESTRICTION

When aggregating demand nodes, three attributes need to be defined on the coarse

grid: the demands, flows and costs. One scheme seems natural for demands and flows;

namely, the "trivial" restriction we describe next. Demands of the nodes being aggregated

are added together, and flows from each supply node to the demand nodes are added

k,1together. That is, if nodes j and I are being aggregated, I;' (DDt) =D1 + D, . For each

supply node i let ij be the arc from node i to node j, and let il be the arc from node i to

node I, then k+x

Restricting the cost of shipment is more complicated, and no obvious 'best'

approach is apparent, however several options exist. The simplest of these is, if nodes

j and k are being aggregated, define the coarse cost to equal the minimum of the fine

costs, i.e., k+1(ce,cu)--in(ccu). Other simple schemes, such as using the maximum

of the fine costs, or a weighted average T k*V(c,ca) = Gf¢+ 1f1 seem equally valid.
al +ate

Some choices for a, and a, are 1 (equal weighting), the demands D, and D,, or the

flows xj and xid, fr'nr node i to nodes j and I from a previous solution. In this last case,

provision must be made for the case where there is zero flow on both arcs. In the initial

phase of the research, all of these schemes were coded, and experimentation and analysis

performed using each of them.

Initial restriction of the problem was accomplished as follows. The demand nodes

are first sorted by increasing cost of shipping from supply node 1, and divided into two

groups about the median of the sorted cost (Figure 7a). All sorts in the algorithm are

accomplished using a shell sort routine (Aho, et. al., 1982).
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COARSENING DEMAND NODES
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Figure 7. Coarsening of Demand Nodes

This procedure results in two groups of demand nodes. The first group are the less

expensive nodes for shipping from S1, and the second group are the more expensive.

Each of these groups were next ordered by increasing cost of shipping from S2. Dividing

each group in half about its median results in one group which is expensive for both

supply nodes, one group which is inexpensive for both nodes, one group which is
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expensive for S2 and inexpensive for S,, and one group which is expensive for S, and

inexpensive for S2 (Figure 7b).

If there are more than two supply nodes in the problem, the above process is

continued. The four groups are each sorted by cost of shipping from supply node 3, then

divided into smaller groups if necessary and sorted again, until the demand node

subgroups have been sorted by cost of shipping from all supply nodes in the problem.

The result is that, in the final ordering, any two consecutive nodes have similar costs from

all supply nodes as long as no 'boundaries' between node groups are crossed. That is,

each group is disjoint, and ordered independently.

Once the node ordering was established, that process never had to be repeated.

Since all of the restriction methods used to aggregate costs involved a weighted average

of the fine level costs, the ordering was preserved throughout the V-cycle. Thus, the

adjacent nodes in the above ordering are aggregated as shown in Figure 7c and 7d.

Thus, if Lf is the original grid, then restriction to LY, the second level of the

problem, is achieved by adding the demands and averaging the costs of neighboring pairs

of demand nodes in the node ordering list. To implement this, the coarse costs and

demands are indexed by the first node of the pair. To restrict to Wi, the k th level,

demands and costs which are distance 2k apart in the node list are combined, where k is

the level in the V-cycle, numbered from 0 (at the finest level) to k at the coarsest level,
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C. INTERPOLATION

Eventually, all the demands and costs are restricted until the coarsest grid, f?, is

reached, where there is only a single coarse demand node. This node necessarily receives

all of the flow from all of the supply nodes, and, being the only possible flow assignment

on the coarsest grid, this is the optimal solution. This solution is then interpolated to the

next higher level. Interpolation here means to solve an Mx2 transportation problem,

where M is the number of supply nodes, and the two demand nodes are the component

nodes of the single i demand node.

A heuristic which is a special case of Vogel's approximation method (Bazaraa et.

al, 1990) is used to solve this Mx2 problem. In this special case (M=2), the solution

obtained by this method is optimal. The method proceeds as follows:

1. For each supply node, determine the difference in cost of shipping to the two fine

grid demand nodes.

2. Rank the M supply nodes in order of these differences, largest to smallest.

3. Allocate flow starting to the least expensive arc from the supply node with the
greatest difference. In the event of equal differences, the arc with the smallest
cost is chosen.

4. If the supply at the current node is exhausted, remove that node from the problem.

5. If the demand at the current demand node is completely satisfied, remove that
node from the problem, allocate the remaining available supply from the current
supply node to the second demand node, and remove the current supply node from
the problem.

6. If there are any remaining nodes in the problem, return to step 3.
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As an example of this procedure, consider the five by two problem shown in Figure

8. The five supply nodes SI, S2, ...S_, have, respectively, 15, 12, 16, 18 and 1 units of the

commodity to deliver. The demands of the two demand nodes D, and D2 are 30 and 45.

Let d = (4 8 4 6 1)' be the vector whose i th entry is the difference between shipping cost

from supply node i to the two demand nodes (the costs themselves are given for each arc

in the figure).

Sorting from largest to smallest value of di, the supply nodes are ordered

(2,4,1,3,5). Note that, while the differences for nodes S, and S3 are the same, the arc

from node S, to node D2 is less expensive than either of the arcs incident from node S3.

Starting with node S2, then, as much flow as possible is sent along the least expensive arc.

In this case, that is the arc to demand node D,. Since this demand exceeds the available

supply from node S2, all of the flow from node S2 goes along this arc. Similarly, node

S4 and then node S, send all of their supply to node D2.

When node S3 has sent 12 units of flow along its least expensive arc, the demand

at node D2 is completely met. Thus node S3 sends its remaining units to node DI, as does

node S5. Although the arc from node S5 to D2 is less expensive, the demand at D2 has

been met from supply nodes where the difference in arc costs is greater.

We can show now that because of the special structure of the Mx2 problem, i.e.,

the fact that there are only two demand nodes, this procedure produces an optimal

solution.

The algorithm may be described as follows. Let a transportation problem with M

supply nodes and 2 demand nodes be represented on a bipartite graph G with K=M+ I
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Figure 8. Five by Two Transportation Problem: Illustration of Mx2 Heuristic
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arcs. Let each supply node i be connected to both demand nodes by arcs of cost c,, and

cO2, respectively. Let b be the vector whose first M elements are the amount of supply

available at nodes S, through SM and whose last two entries are the negative of the

demand at nodes D, and D2, respectively. Let x be the vector whose i+M(j-J) st element,

denoted x(,,, is the flow along arc (ij) from node S to node D,, and let c be the vector

whose i+M(j-1f' element is the cost of arc (ij). For every arc (ij), let x,, be determined

as follows:

For each supply node S,, determine d,= c,-c,,I for each supply node i. Put the

di's in order, breaking ties by comparing the costs of the original arcs. Starting with the

node k whose difference is largest, assign as much flow as possible to the less expensive

of chi and ck2, until either the supply at that node is exhausted or the demand is met. If

there is any remaining supply at node k, assign it to the remaining demand node. Next,

repeat the process at the supply node whose difference is the next largest. Continue until

all flows have been assigned.
Theorem 2: Let x be the vector of flows assigned for the Mx2 problem

using the algorithm given above. Then x is the optimal solution to the Mx2
problem

Minimize z =c Tx
Subject to: Ax = b.

XkO

Proof: Assume that the flow, x, as determined above is not optimal. Then there

is a flow x**x which is optimal. Number the supply nodes so that they correspond with

non-increasing values of d,. Starting with supply node S,, compare the flow determined
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the node with the first difference between x" and x node i, and let arc (ij) be the arc

between node i and demand node D, and arc (i2) the arc between i and demand node

D 2. Without loss of generality, assume cu s c2 Let A =x, -x . Since xi, is as large

as it can be (by construction), then 44l must be less than x,,, so A>O . That is, to reach

optimality the flow from node i to demand node D, must be decreased by a positive

amount. Likewise, the flow from node i to demand node D 2 must be increased by A so

that the total flow out of supply node i remains unchanged. The total flow from all

supply nodes after node i into demand node D, must be increased by A, and the total flow

from subsequent supply nodes into demand node D 2 must be decreased by A so that the

total demand for each demand node is met. Symbolically:

X"2 -x 1 = -A

EJ'.A(xJ -xj) --A

A">O

Let z" = cTx" be the optimal objective function value, and let z=cTx be the objective

function value for the flows computed initially. Then z" is equal to z plus the difference

in flows on each arc times the cost of that arc. That is,
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z *=z+(XJZ -4C + (za -XUX2+3j2  I [(XJI, XU~CU +(XO X;)CLZ]

=z +Aci1 -Ac 0 +i,.[X -J1*u+(Ux~

z* =Z+A(Ci, -C0 ) +4~1 -1 [(X11 -X,)c - (Xi -XI)CJ21

But~~bydefinition. kcicId ,oc c -d , and -d, -e -d ,and as stated above,

J.,-IAXkX -A 0 Id 4So

~z (-d4 )A j +(dl-x)A

Z *k

Contradicting the assumption that x *x is optimal. U
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D. NESTED ITERATION

During phase one, the goal of interpolation was to implement nested iteration. That

is, to turn the optimal solution on a coarser level into a good initial solution on a finer

level. This initial solution is identified to GNET, and GNET proceeds from this solution

to optimality.

In order to identify the initial solution to GNET, the T (Tail) data structure is used

to mark the arcs which are likely candidates to be in an optimal basis. Specifically, the

sign bit of the T array entries for those arcs which have positive flow after interpolation

is marked for identification.

GNET then proceeds in two phases. Starting with an artificial basis, the reduced

cost of the arcs which have been identified by the multilevel algorithm are computed.

If these arcs price out favorably, they are pivoted into the basis.

Up to a user-supplied maximum number of pivots, GNET then obtains the best flow

possible using only these candidate arcs. Then, GNET starts its second solution phase.

The remaining arcs are priced out, and, if favorable, pivoted into the basis. An optimal

solution is found for the problem on the current level. This optimal solution is thc.

immediately interpolated to the next higher level of the V-cycle, where the process is

repeated.

Since the candidate arcs are still being priced out and pivoted into the basis, this

approach proved very expensive in terms of computational effort. The lower limit on the

number of pivots required in a V-cycle using this approach is f. N, where M is the
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number of supply nodes, N the number of demand nodes on the finest level, and k the

number of the coarsest level. As the number of levels increases, this lower limit increases

to approximately 2MN.

Although about half of these pivots are less expensive than the pivots on the finest

level, it still is readily apparent that the amount of work being done would always be

greater than the roughly 3N/2 pivots being performed by GNET from a cold start on the

finest grid. A less expensive approach had to be found, if the multilevel approach was

to be useful.

The second approach to nested iteration was to eliminate the price out step of the

previous method. That is, candidate arcs were identified to GNET and immediately

pivoted into the basis, without examining the reduced cost of the arc. In order to

implement this change, some new data structures had to be created and passed to GNET.

These data structures identified the arcs which had positive flow after interpolation from

the previous level. The structures were a HEAD array, a TAIL array, and a POS array,

each of a length equal to the number of arcs with positive flow.

These new data structures were not in a reverse star arrangement, as opposed to the

arcs which originally identified the network to GNET. These structures essentially

constituted an arc list, in which an entry was required in each array for each arc. The

HEAD array identified the demand node, the TAIL array identified the supply node, and

the POS array indicated where in the original T array the arc was located. This facilitated

GNET finding costs and flows. In addition, a count of the number of arcs with positive

flow was also passed.
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To test this new algorithm, the optimal solution on the finest level is passed in to

GNET to see how quickly it would return it. Some additional pivots are performed,

beyond those required to bring the optimal arcs into the basis. This indicates that, due

to the order that the arcs are pivoted in, some of the arcs were being removed from the

basis after being added to it, so that a little extra work is being performed in order to

return to optimality.

However, the amount of additional work is very small, and starting with the optimal

solution, GNET returns an optimal solution very quickly. This result is promising, since

GNET was actually starting with an artificial basis and pivoting in all of the optimal arcs,

yet the time required to reach optimality is only 20% of that required from a cold start.

This would indicate that, for a starting solution sufficiently close to the optimal solution,

a significant time savings could be realized.

When this new subroutine is called from the multilevel algorithm, however, the time

savings as compared to a cold start at each level are very small. This means two things.

The first is that, although on any given level running GNET from a cold start is slower

than using GNET with the interpolated solution from the previous level, the overall

running time of the algorithm using all levels is greater than a single call to GNET from

a cold start on the finest level. The second is that the initial solution determined by

interpolation of the coarser level optimum solution was not sufficiently close to the

optimum solution on the fine level.

We believe that the main reason a multilevel approach failed to improve the

performance of GNET is that the primal network simplex algorithm is not a local
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operator. It expects and produces global information, and does so very efficiently. Since

GNET is not characterized by the usual problem which multigrid fixes, i.e., a numerical

process which stalls due to the inability to propagate local information quickly, little

benefit is gained from using GNET in a multilevel approach.

Up to this point, the algorithm we had been using is really closer to nested iteration

than to a genuine multilevel V-cycle. The restriction portion of the V only identifies the

nodes to be aggregated, and combines demands and costs. No relaxation is being

performed on the way down the V. In order to move closer to a standard multilevel

algorithm, and to try to provide a better starting solution after interpolation, we now

consider a full multigrid cycle algorithm.
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V. THE FULL MULTIGRID ALGORITHM

In order for a full multigrid algorithm to show an improvement over the V-cycle

algorithm, there must be a reason for revisiting the coarsest grid again and again.

Repeated iterations on the same problem, using the same restriction method and the same

interpolation method, would result in the same answer at a much higher computational

cost. The ultimate goal is to reach an optimal solution at the finest level. All of the

components of a multilevel algorithm need to work together to achieve that goal. In the

simple V-cycle of the previous chapter, the optimal solutions to the subproblems on the

coarser levels are not interpolated to the optimal solution on the finest level.

Recall from Chapter III that, in a full multigrid V-cycle, an initial approximation

to the solution on any level is obtained by interpolation from the solution on the next

coarser level, which is itself the result of an FMG cycle. During the downstroke of each

V-cycle, the goal is to obtain a new problem on the coarsest level which will yield a good

solution to the problem on that level, and ultimately lead to a good initial solution to the

problem on the next finer level. There are three aspects of the algorithm, namely

restriction, interpolation and local relaxation, any one or more of which might need to be

changed so that optimality would be achieved.

Of these three procedures, we only experimented with restriction and local

relaxation in the current research. In every case, the interpolation method described in

Chapter IV was used to move from f*'• to C". This was done for two reasons. First of
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all, none of the other proposed schemes, such as a simple greedy algorithm, had the

intuitive appeal of this scheme. The total complexity of this scheme is O(N) (Kaminsky,

1989), and an optimal solution is guaranteed as demonstrated in Chapter IV. Secondly,

this was the method used by Kaminsky in his research, and he reported this as an

"optimal disaggregation method" (Kaminsky, 1989).

This chapter will present the various restriction and local relaxation procedures

investigated. The restriction methods studied can be divided into two categories. The

first being variations on the weighted averaging of the costs, and the second being

implementation of an approach which bears similarity to the full approximation scheme

(FAS), through the use of dual multipliers. The local relaxation methods investigated can

be divided into those utilizing local optimization, and one using a cycle detection and

removal algorithm.

A. VARIATION OF COARSENING SCHEMES

1. Flow and Demand Weighting

In the single V-cycle algorithm, only a single method of restriction is used

throughout the cycle. In the full multigrid cycle, the opportunity of using different

coarsening methods is gained, since coarse level nodes are visited and revisited in each

V-cycle. Demands and costs are initially coarsened with no knowledge of the ultimate

flows on the arcs. Within each V-cycle, flows and costs are restricted with an initial

solution at hand. There is no reason that the restriction method used within a V-cycle

should be the same as the method used for initial coarsening. In fact, at the coarsest level
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of each of the V-cycles in the FMG, the problem will always have a single demand node

which requires the total of all the supply in the problem, and an arc from each supply

node to this demand node carrying all of the available supply. The only possibility for

improving the problem on the coarsest level, and thereby improving the result on the

finest level, is by changing the costs of these arcs.

During the initial coarsening process, when the original problem is first

transferred to the coarsest level so that the FMG cycle can begin, costs are restricted by

either choosing the minimum cost of the two fine level arcs, or by computing a weighted

average based on the demand of the nodes on the fine level, with demand-weighting

producing a more nearly optimal solution. Within the V-cycles of the full multigrid

algorithm, weighted averages based on either flow or demand were investigated, since,

in the V-cycle algorithm, they gave better results than using the minimum or maximum

cost. That is, the two methods of restricting costs which were implemented were

demand-weighting,

k c dk kdkk+1 k*-t k k. -•~ ÷e941 aW

where J is the aggregation of fine nodes j] and J2; and flow-weighting,

k k k
kA1 A; 1 k C#UI.1+C4 ,21#CU=I; C-- k

XV1 +X4P

Care must be taken in the case that flow on both arcs is zero. In this case, a simple

average of the two costs is used.
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2. Cost Conversion Using Dual Multipliers

In multigrid algorithms for solving linear partial differential equations, at all

but the finest level of the problem the residual equation, Ae--r, is solved, rather than the

original equation, Au=f. The reason for this is that the iterative methods used as local

relaxation methods have the property that, after only a very few iterations the error in the

current approximation is smooth, and this smooth error is well approximated by a transfer

to the coarser grid. No such statement can be made about the solution to the original

equation.

Reasoning by analogy, a multilevel approach to solving an optimization

problem should also be using something similar to the residual equation. In a system of

finite difference equations, the residual is a measure of by how much an approximate

solution fails to satisfy the system of equations. In an optimization problem, there are

two choices readily available which measure a similar quantity.

The first choice is b-Ax, which is a measure of by how much the constraints

of the problem are violated. While in a more general setting this approach might have

advantages, all of the methods used in this work start from a feasible solution. That is,

no constraints are violated and so b-Ax is always 0.

An alternative choice for a "residual" is the reduced cost of the non-basic arcs,

since a necessary and sufficient condition for optimality is that the reduced cost for any

non-basic arc, uj-v,-c,,, be less than or equal to 0, where the u, are the duals for the supply

nodes and the v, are the duals for the demand nodes. One interpretation of the dual

multipliers is that of a 'node potential'. It is beneficial to increase the flow on an arc
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only if the difference in node potential, ui-vj, is greater than the cost of the arc. (Bazaraa,

et. al., 1990). This approach is the one used by Kaminsky (1989).

The duals are used in the following manner. Assume a solution has been

interpolated to L? from L?*' by solving the Mx2 subproblems associated with each

coarse-grid demand node. When restricting from f? to 0'÷, the same Mx2 problems that

are found in the interpolation are solved again. The duals of the supply nodes for this

problem are then computed, and used as the costs of the arcs on W'.

The computation of the duals is a simple process. In the non-degenerate case,

a rooted spanning tree is created, rooted at an artificial node connected to the second

demand node. The cost of the root arc is arbitrarily assigned a value of 0, and so the

dual of the second demand node is also 0. From there, the dual of the 'turning' supply

node, the one which has positive flow to both demand nodes, is computed. Since the

reduced cost u1-vj-c11-O for all basic arcs, and the dual of the second demand node, v,, is

0, then u, = ci2, where i is the 'turning' supply node. For example, in the problem shown

in Figure 9, the turning node is node S2, and it's dual, u2 is 3.

The dual of the first demand node is then ui-c,,. In Figure 9, this means that

the dual of D,, v,=3-7=-4. Now that the dual of both demand nodes is known, the duals

of all the supply nodes can be computed by adding the dual of the demand node which

they supply to the cost of the arc connecting them. In the example, u1=-4+(-4)=-8 and

u3=0+2=2.

In the degenerate case, there is no path from the second demand node to the

first. In !ight of the restriction process, this means that a subset of the supply nodes
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Figure 9. Computation of Dual Multipliers

feeding the coarse demand node supply one fine node, and the complement of that set

feeds the other. An arc with zero flow could be chosen to enter the basis, and the duals

computed as above based on the cost of this arc. Rather than use this somewhat arbitrary

method, the costs of the arcs with positive flow on W are assigned to the corresponding

arcs on f÷A.

This approach yields marginally better results than those previously described.

However, reasoning by analogy it appears that a step is missing in the algorithm. A

multigrid algorithm for solving a partial differential equation uses the solution to the

residual equation as a correction to the initial solution vector. That is, after solving the

residual equation AYe.-?, the current approximation is corrected by vs--v- + ek. Such a
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correction procedure is not yet implemented. Currently, during the interpolation process

back to f?, the costs from the original L? are replaced in the problem, and once again the

full problem (vice the residual equation) is solved. In order to completely follow the

analogy of solving the residual equation in order to determine a correction to the initial

solution, a scheme must be developed to extract the correction term from the solution on

Qa, and add it to the initial solution. In short, an implementation of the Full

Approximation Scheme (FAS) needs to be developed. Time constraints prohibited full

consideration of this question for the present work, however it is the most promising

avenue for further research.

B. LOCAL RELAXATION

1. Local Relaxation by Optimization

One of the keys to a properly functioning V-cycle is a good local relaxation

method. The interpolation process, using the Mx2 transportation problem algorithm,

produces a locally optimal solution. That is, looking only at the flow to the fine level

node pairs which comprise each coarse level node, the solutions produced by interpolation

are optimal. However, when these demand nodes are considered as part of the global

problem, the flow is not optimal.

The global problem is quite different from the union of several local problems.

In each local problem, the reduced cost of each non-basic arc is less than or equal to zero

since the current solution for it is optimal. However, the duals in the global problem are
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considerably different, and subsequently the reduced cost (u1-v,)-c 1j of a non-basic arc

might be positive, indicating non-optimality.

Several techniques were investigated to move from the union of several locally

optimal solutions towards a global optimum. By locally optimal, we refer to flows which

are optimal on the subproblems created by the interpolation of a coarse demand node.

By the nature of the interpolation procedure, once a flow was assigned to a coarse

demand node, it could only then be divided amongst the nodes which comprised that

demand node. This prevents any movement toward a globally optimal solution which

does not have that particular total flow from each of the supply nodes to all of the

demand nodes. A short example, illustrated in Figure 10, will help to demonstrate this

problem.

Suppose that, in a three supply node problem, on level Q'f÷ demand

kI rk k k. inode D- is composed of fine level nodes D, and D2 , and demand node D2  is

composed of nod 3  anD4  Further, suppose that the demands at

k knodes Di through D4 are 18, 5, 6, and 13 respectively. Total supply available from
node S, is 15, from node S2 is 15, and from node S3 is 12. The fine level cost vector is

k k k k k k k k k k k kT
[C11, Cl2,cl 3,c14,c 2 c,c721 c 2Cc24,cSl, C32,C 33,C 4

=[-10, 13, 2, 2, -2, 25, 20, 1, 8, 2, 7, 5].

The coarse level demands would then be 23 at D÷ and 19 at ;2 , the

costs would be
[k.k kl k*I A .d ,.k* 5. I 7, [ 3
c11 ,- 12 ,C21 ,C22 ,c31 ,C32  , 7, 2, 3.895, 5, 5.632],
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Figure 10. Comparison of Initial Flow and Optimal Flow
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and the optimal solution to the coarse problem is

k+1 k+1 k+1 k+1 k*l I 1! k [15 8
1x11 ,PX2 ,xzX , X22 ,3 -X32 [15, 0, x, 7, 0, 12]1

The result of the interpolation process is shown in the top half of Figure 10,

with the two subproblems shown to the left and right, respectively, of the supply nodes.

In each subproblem, one of the supply nodes is not supplying any of the demand nodes.

This is caused by the fact that in an Mx2 problem, at most one supply node can feed both

demand nodes in the optimal solution. This means that on the coarse level, only one

supply node will be supplying more than one of the two coarse demand nodes. The result

is, when the coarse demand node is divided into its component fine nodes, at most two

supply nodes are providing flow in each of the interpolation subproblems. Since, in

Subproblem 1, supply node S3 provides no flow to either demand node Dk or D) , it

cannot provide flow to any of the finer level nodes which comprise these nodes.

This is not as serious a shortcoming as it first appears to be. In fact, in a basic

feasible solution to the global problem on any level, a maximum of M- 1 demand nodes

can be supplied by more than I supply node. The difficulty is not that node S3 is

prevented from supplying a portion of the nodes, but that the decision as to which nodes

it may supply is made so early in the interpolation process, and, if relying solely on

interpolation, that the decision is irreversible once made.

In Figure 10, the flow which results from the interpolation process is compared

to the optimal flow for this problem, shown in the lower half of the figure. As discussed

above, the decision not to allow supply node S3 to provide flow to the coarse demand
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node D 1 was optimal in Qkf', but results in no flow between S3 and

k keither Di or Dý on £i. Since the optimal solution includes flow on arc (3, 1), it is

impossible to reach optimality using interpolation alone.

In the PDE problem, the analogous difficulty is addressed by local relaxation.

In our context this means crossing the boundaries imposed by the restriction process, so

that flow may be shifted among the numerous locally optimal solutions, in such a way

that the global objective function is improved. Several possible alternatives for local

relaxation were studied, the first of which was designed to spread flow between demand

nodes which had not been previously paired during the restriction and interpolation

processes.

To bt.gin this local relaxation, a small transportation problem is constructed

using the second and third demand nodes on the current level from the ordered list of

nodes (since the distribution of flows for the first and second nodes is already locally

optimal). This problem is solved using the same Mx2 algorithm which is used in

interpolation.

Next a new Mx2 problem is created using the (revised) flows to the third

demand node and the flows to the fourth demand node. This method continues on until

the last two nodes are reached. Recall from Chapter IV that nodes which are adjacent in

the node ordering list have similar costs for shipping from all supply nodes, so comparing

adjacent nodes is a reasonable approach to local relaxation.
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The above method was altered to encompass a larger 'local' area in the

relaxation step on each level. That is, in order to test whether an interaction of a greater

number of demand nodes might improve the solution, the method was changed to

accommodate a larger problem than Mx2. In the new approach, a larger problem was

selectable as the local relaxation problem. The problem size can be chosen to be Mx4,

Mx6, and so forth up to Mxl6. GNET is used to solve each of these local problems,

starting with the current flows as an initial approximation. Also, the user is allowed to

specify how much overlap is desired between subproblems. For example, if a subproblem

size of 4 with an overlap of 1 is selected, the first subproblem would consist of demand

nodes DI, through D4, the second would consist of nodes D4 through D7, etc., as shown

in Figure 11.

RELAXATION OVER 4 NODES, OVERLAP OF 1

COARSE NODES

Figure 11. Four Node Relaxation with Single Node Overlap
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These combinations were tested on a network consisting of five supply nodes

and 1024 demand nodes, created by NETGEN (Klingman, et. al., 1974). Each supply

node is connected to every demand node. The results are summarized in Table U. As

is apparent from this table, little or no benefit is gained by increasing the size of the local

area. Although in one case (Mx 16, overlap 0) the speed of the algorithm is marginally

increased, the accuracy is the same for all combinations.

Table I1. COMBINATIONS OF SUBPROBLEM SIZE AND OVERLAP

Combination Running Time (s) % ove
Optimality

"M x 2 .269451 58.37

"M x 4, overlap 0 .416265 58.37

"M x 4, overlap 2 .625616 58.37

"M x 8, overlap 0 .324426 58.37

"M x 8, overlap 2 .433421 58.37

"M x 8, overlap 4 .386384 58.37

"M x 16, overlap 0 .255700 58.37

" x 16, overlap 2 .339964 58.37

"M x 16, overlap 4 .299668 58.37

M x 16, overlap 8 .397563 58.37
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2. Local Relaxation by Cycle Removal

The idea behind the methods of local relaxation discussed so far has been that,

while the solution to each of the subproblems is locally optimal, tde global solution is not.

Therefore, information which is unavailable to a subproblem must be shared with it to

move towards a globally optimal solution. The next technique applies a slightly different

reasoning. The union of a pair of the locally optimized subproblems may be flawed, in

that too many arcs might have flow on them, creating cycles and a less than optimal

solution. This local relaxation technique attacks this feature of the interpolation process.

When interpolating from L?÷' to W, each coarse demand node generates two

fine demand nodes and M+I arcs with positive flow, in the non-degenerate case. If the

subproblem is degenerate, then only M arcs will have positive flow. If there are N/2

demand nodes on ?'÷, the initial feasible solution to the fine level problem will have

positive flow on between NM/2 and (NM+N)12 arcs, depending on how many

subproblems are degenerate.

The fine level problem has M supply nodes and N demand nodes, so an

extreme point solution will have M+N-J arcs with positive flow, absent degeneracy

(Wolsey and Nemhauser, 1988). In the extreme degenerate case each supply node

provides flow to a disjoint subset of the demand nodes. This means that each demand

node has exactly one arc with positive flow incident to it, so the number of arcs with

positive flow is only N.

Since there are M+N-I arcs in a spanning tree over M+N nodes, and the

addition of a single arc to a tree results n a cycle, then the interpolation process will
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create cycles whenever NM/2 is greater than M+N-I, which will be true for any long

transportation problem whenever M>2 and N>3. So, for most problems, the interpolation

process will introduce cycles. In order to more fully understand this process, the 3xN

problem will be taken as an example. Some of the possible combinations produced in the

2xN and 3xN interpolation routines are illustrated in Figures 12 and 13.

In each subproblem of the 3xN problem, either one, two or all three supply

nodes may be providing flow to either of the demand nodes. In the case that only one

supply node supplies the demand nodes, it is impossible for cycles to develop. Since

there must be two arcs with positive flow in each problem, the union of two such

subproblems, with common supply nodes, will have five nodes and four arcs with positive

flow.

If there are two active supply nodes in the union of the two subproblems, then

there will be three arcs with positive flow in a non-degenerate problem, and two arcs in

a degenerate problem. For every two non-degenerate subproblems, a cycle will be created

in the initial solution to the fine level problem, since there will be six nodes and six arcs

with positive flow. The union of a degenerate problem and a non-degenerate problem

will result in a non-degenerate basic feasible solution (six nodes and five arcs with

positive flow) on 1?, while the union of two degenerate subproblems will result in a

degenerate problem on the fine level (six nodes and four arcs).

In the case of three active supply nodes, the possibilities are either three or

four arcs with positive flow for each subproblem. The union of two non-degenerate

subproblems will result in two cycles being introduced on f?. A non-degenerate and a
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THE UNION OF TWO BASIC FEASIBLE
SOLUTIONS PRODUCES A CYCLE

THE UNION OF TWO DEGENERATE
SOLUTIONS RESULTS IN A
DEGENERATE SOLUTION

THE UNION OF A BASIC FEASIBLE
SOLUTION AND A DEGENERATE SOLUTION
RESULTS IN A BASIC FEASIBLE SOLUTION

Figure 12. Unions of Various Two Supply Node Problems
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THE UNION OF TWO BASIC
FEASIBLE SOLUTIONS PRODUCES TWO CYCLES

THE UNION OF TWO DEGENERATE
SOLUTIONS PRODUCES EITHER A

BASIC FEASIBLE SOLUTION OR A CYCLE

THE UNION OF A DEGENERATE
SOLUTION AND BASIC SOLUTION PRODUCES

A SINGLE CYCLE

Figure 13. Unions of Three Supply Node Subproblems.
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degenerate combination will beget a single cycle, and two degenerate subproblems may

result in either a basic feasible solution or a degenerate solution containing a cycle on W.

These possible combinations apply whenever two subproblems share common

supply nodes. Since the demand nodes of each subproblem are disjoint, cycles can only

be created when two demand nodes from different subproblems share common supply

nodes. Since a network flow problem is a special case of a linear programming problem,

an optimal solution must exist at an extreme point that corresponds to a basic feasible

solution. While this solution may in fact be degenerate, i.e., contain fewer than M+N-I

arcs with positive flow, it cannot have more; that is, a solution with more than M+N-I

positive flows is not an extreme point solution. A reasonable candidate for a local

relaxation process is to adjust the flow in the initial solution produced by the interpolation

process, so that cycles are removed and the objective function is reduced. The effect of

this procedure is to adjust the locally optimal flows which result from interpolation so that

they are more nearly optimal in the global problem.

Cycles are detected in the algorithm using a depth first search (DFS). The

DFS proceeds as follow:

1. Initialize all nodes with DFS number 0, to indicate they have not yet been visited.

2. Start at any node. In this particular case, the second demand node of the second
subproblem is chosen to begin the search. Assign this node a DFS number of I,
and define node 0 to be the predecessor of this node.

3. If any node adjacent to the current node has been previously visited, and has a
DFS number lower than the predecessor of the current node, then the path from
that node through the current node and back is a cycle. Stop DFS and call the
cycle removal routine.
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4. If no adjacent nodes have lower DFS numbers, then look for any adjacent nodes
which have not been visited. If there are any unvisited adjacent nodes, identify
the current node as the predecessor of the unvisited node, make the unvisited node
the current node, and assign the current node a DFS number equal to the DFS
number of its predecessor plus 1.

5. If there are no unvisited nodes adjacent to the current node, make the predecessor
of the current node the current node. If the current node is node 0, stop.
Otherwise, return to step 3.

Once a cycle is detected, a cycle removal algorithm is used to adjust the flows.

This algorithm uses a mechanism very similar to the one GNET uses when pivoting a

new arc into the basis. This technique is illustrated in Figure 14. The unit costs of a

change in flow in both the clockwise and counter clockwise directions around the cycle

are determined by adding together the costs of the arcs whose flow increases and

subtracting the cost of the arcs whose flow decreases. The change in objective function

value per unit change in flow in one direction will be the negative of the change in the

opposite direction. For example, in Figure 14, a unit increase in flow clockwise around

the cycle will cause a change in the objective function value of 5-4+8-3--6, an increase.

A unit increase in the counter-clockwise direction yields -6, a decrease of 6 in the

objective function. Clearly, increasing the counter-clockwise flow is profitable, so flow

is increased in this direction. Flow will thus be increased on arcs (S,, D2) and (S2, DI)

and decreased on arcs (S,, DI) and (S2, D 2), until the flow on (S,, D,) reaches zero. That

is, flow is increased on the arcs in the cycle which point in the profitable direction, and

decreased on the arcs which po'*t against the flow, until one of the decreasing arcs

reaches zero flow. At this point, the number of arcs in the cycle with positive flow has
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-14 (cost, flow)
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BEFORE CYCLE REMOVAL
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AFTER CYCLE REMOVAL

Figure 14. Cycle Removal
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been reduced by one, the cycle has been removed, and the value of the objective function

has been lessened from 152 to 140.

This technique is used as a local relaxation method by applying it to pairs of

subproblems. Two subproblems which are adjacent in cost space are joined to form an

Mx4 problem, which is inspected for cycles. If any are found, they are removed and the

problem is searched again.

Two different methods for applying this technique were investigated. The first

was to remove the cycles from adjacent Mx4 problems, then repeat the process by joining

pairs of Mx4 problems, then Mx×6, and so on until the global problem for the current

level is inspected and certified cycle free. This approach was extremely inefficient. The

second approach only considers more local changes. That is, only pairs of the

interpolated subproblems were checked for cycles. The gain in speed from using this

second method were tremendous, and the decrease in accuracy was negligible. These

results are summarized in Table III.

While the multilevel algorithm performed wdll on problems with only two or three

supply nodes, the results for the five supply node problem are unsatisfactory. The above

table clearly indicates that relaxation by cycle removal is as effective when applied over

a local area as when applied globally, and the computational effort required for local

relaxation is an order of magnitude smaller.

69



Table Ill. CYCLE REMOVAL ALGORITHM

PROBLEM SOLUTION RUN TIME % ABOVE
SIZE METHOD OPTIMALITY

2 x 1024 COMPLETE 1.210835 .02
RELAXATI ON

2 x 1024 LOCAL .131437 .02
RELAXATION

2 x 1024 GNET .041132 0

3 x 1024 COMPLETE 1.15788 8.41
RELAXATION

3 x 1024 LOCAL .108765 8.41
RELAXATION

3 x 1024 GNET .076648 0

5 x 1024 COMPLETE 1.18411 58.4
RELAXATION

5 X 1024 LOCAL .161112 59.7
RELAXATION

5 x 1024 GNET .106392 0
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VI. CONCLUSIONS AND RECOMMENDATIONS

Research into the applications of multilevel techniques to optimization problems is

only beginning. Opportunity exists for much further research in this area. The work

done in this thesis should provide some valuable insights, and point out some of the areas

where the potential benefit is the most promising.

Of the schemes investigated, the best results to date have been obtained using the

cycle removal algorithm for local relaxation in an FMG cycle, demand-weighted

restriction and Mx2 interpolation. The use of demand-weighted restriction and Mx2

interpolation parallels the results obtained for the geometrical long transportation problem,

(Kaminsky, 1979), but they differ significantly in the method of local relaxation. Also,

Kaminsky used one method of interpolation from the end of a V-cycle on flý" to the start

of a V-cycle on W?, and another method within each V-cycle, whereas we use the same

interpolation throughout.

The results obtained thus far, while providing some positive indications, do not

show that a multilevel approach is as efficient a method as the primal network simplex.

Network simplex algorithm represents 20 years of fine tuning and extensive computational

research. It should not be expected that a new algorithm would show comparable results

initially. The current results do show that this approach may be used in optimization, and

may be used on a much larger class of problems than was previously thought. As

improvements to the methodology are made, the multilevel approach may eventually
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prove to be an effective alternative solution method. Many possibilities for improving

the performance of the methods developed in this paper exist. Some of these are

discussed briefly in the following sections. First, however, a summary of the highlights

of the current research is given.

A. SIGNIFICANT RESULTS

The most significant contribution of the current research is the removal of the

requirement for a physical interpretation of the problem, and the dependence on a

relationship between distance and shipping costs. By mapping the problem into cost-

space, a multilevel approach can be applied to a much broader class of problems. Of

course, there is a limit to the number of supply nodes which this approach can handle,

due to the increasing dimensionality of the problem. However, for problems with few

supply nodes, this approach can be helpful. The result is that problems which have either

a very small number of supply nodes, or a geometrical interpretation, can be solved to

within an acceptable degree of optimality using a multilevel approach, however, problems

which do not meet either of these criteria do not seem to be tenable to currently known

multilevel methods.

The realization that the interpolation process would introduce cycles into the global

problem is important for future research. Any algorithm which exploits the tree structure

of a basic feasible solution should be improved by searching for and removing cycles.

Finally, the procedure for rapidly identifyin6 the vector of dual multipliers (to

within a constant, which is all that is required), may have important applications in a
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fbture FAS algorithm. When a method for extracting the correction from the solution to

the problem on the coarser level is found, then using the dual multipliers, which is

analogous to using the residuals in a partial differential equation, may be the appropriate

restriction method.

B. AVENUES OF FURTHER RESEARCH

First and foremost, an algorithm analogous to the full approximation scheme (FAS)

should be more fully developed. In the current approach, we were unable to find an

effective method of extracting a correction from the solution on L?*' and applying it to

the approximation on K?, while still maintaining feasibility. Instead, we computed the

solution on f/?÷ and use interpolation to replace the solution on W/. Since a direct analog

to the residual in a PDE is difficult to obtain in an optimization problem, working with

the original problem (as opposed to the residual equation) seems like a better approach.

This would indicate that FAS is the method of choice, however, the difficulty mentioned

abovc must be overcome.

Another possibility for improving the current algorithm is to begin the procedure

by overlaying the cost-space with a regular M-dimensional grid (M-l in the 'redUced

dimension' problem). The first step of the restriction process would then be to map the

demand nodes from their natural irregularly spaced positions in cost-space to the regular

grid points. Later, the final interpolation step would be to transfer from the regular grid

back to the original demand points. This approach overcomes a shortcoming in the

current algorithm, which aggregates demand nodes which are closest in relative distance
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in cost-space, regardless of the absolute distance between them. In using a regular grid,

a demand node on L?*' would reflect only the demand at nodes within a small distance

away, relative to the level k+J. Another important potential advantage is that the work

on each coarser level is reduced by 2 u, where M is the dimensionality of the problem.

By contrast, the current algorithm reduces the work by approximately half in going to a

coarser level.

If the regular grid approach proves worthwhile, then it could be extended to a fast

adaptive composite (FAC) grid approach. In FAC, the single irregular grid is replaced

by the union of two or more regular grids of different mesh spacing. That is, regions of

the domain which benefit from a closer grid spacing are examined on a finer grid, while

regions which do not require as much attention are mapped initially to a coarser grid. A

V-cycle is started on the fine grid region, and when the level of coarseness of the

remainder of the problem is reached, the domain is extended to include the entire

problem.

The benefit of an FAC algorithm is that information from the sparse regions of the

problem is exchanged with information concerning the dense regions while the algorithm

is working on coarser levels. This information is then disseminated throughout the dense

regions as the algorithm moves to finer and finer levels.

In a network optimization setting, this might be done by overlaying a fine grid on

those regions of cost-space where the density of demand nodes is high, and a coarser grid

on the areas of low density. In this way, the flow to nodes which are most similar to

their nearest neighbors in cost-space will receive the benefit of a finer grid spacing, while
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nodes which are naturally more distinct from their neighbors will only enter the problem

on the coarser levels.

The current (FMG) algorithm will benefit from further research in at least two areas.

The first is a graph-theoretic study of the interpolation and relaxation processes. The

efficiency of the algorithm would definitely improve if a better cycle identification and

removal routine is developed. Currently, every pairing of subproblems is searched for

cycles, and, if one is found and removed, the search is restarted. One focus of a graph-

theoretic study would be to identify those subproblems which introduce cycles into the

global problem, forecast how many cycles will be created, and possibly even which nodes

will be in the cycle, so that the cycles may be removed quickly.

The second area for potential improvement of the current algorithm is in developing

more efficient data structures. The current approach is somewhat extravagant in its use

of storage space, since costs, flows, and demands for each node at each level are stored

in MxNxk arrays. With adequate bookkeeping, this storage requirement could be reduced

to MxNx2 for each variable, which for large problems would be a significant reduction

in storage space, and possibly in execution time.

75



APPENDIX

PROGRAM FMG

C WRITTEN BY KEVIN J. CAVANAUGH
C 1 NORMAN DRIVE
C GALES FERRY, CT 06335
C
C IN PARTIAL COMPLETION OF THE REQUIREMENTS FOR
C MS IN OPERATIONS RESEARCH
C MS IN APPLIED MATHEMATICS
C NAVAL POSTGRADUATE SCHOOL
C MONTEREY, CA
C SEPTEMBER, 1992
C

C THIS PROGRAM WILL PERFORM A FULL MULTIGRID SCHEME ON A LONG
C TRANSPORTATION PROBLEM.
C THE MULTISTAGE APPROACH IS TO COMBINE DEMAND NODES BASED
C ON THEIR PROXIMITY IN COST SPACE.
C
C THESE SUPERNODES ARE THEN FURTHER COMBINED, AND
C THIS COARSENING IS REPEATED UNTIL THE NUMBER OF DEMAND NODES
C IS EQUAL TO 1. AT THIS POINT THE OPTIMAL SOLUTION FOR THIS
C PROBLEM IS EASILY FOUND.
C
C THE SOLUTION TO THIS COARSE PROBLEM IS THEN INTERPOLATED TO
C THE NEXT FINER LEVEL.
C LOCAL RELAXATION IS PERFORMED ON THIS LEVEL BY REMOVING
C CYCLES CREATED BY THE INTERPOLATION PROCESS
C
C THE INTERPOLATION - OPTIMIZATION SEQUENCE IS REPEATED UNTIL
C THE FINEST (ORIGINAL) LEVEL IS ONCE AGAIN REACHED.

C VARIABLE DECLARATIONS
IMPLICIT INTEGER (A-Z)
INTEGER RDA(7), LOOP, KK, NR,GROUP, OVERLAP,

X FLOWIN(1100),
X U(1100),X(1100),P(1100),DP(6000),IT(1100),
X CPX(1 i00),NSA(1 I 00),ISA(1 1 00),A(1 101),
X LOC(1100), OUTFLOW(50), IN68, MR, DN(1100)
X IAJ, ACODE, BCODE, CSECODE, TOTAL SOLVETIME
X ,ACOST(0:10), BCOST(0:10), D1,D2, INCR,INCR2

REAL*8 ATIME,BTIME,TEMP,CSETIME, TIMING(3,0:10),
X TEMPTIME
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INCLUDE 'COMMON BLOCK A'

INCLUDE 'STRUCT BLOCK A'

C INITIALIZE ARRAYS AND VARIABLES

INFINITY = 1000000
RINF - 1000000.0
DO 20 1 = 1,50

SUPPLY (I) = 0
DO 30 J = 1,1100

DO 40 K - 0,10
COST (I,J,K) = INFINITY
CPRIME (IJK) = RINF

40 CONTINUE
30 CONTINUE
20 CONTINUE

DO 50 I - 1,1100
NODE()=I
DO 60 K=0,10

DEMAND(I,K) = 0
60 CONTINUE
50 CONTINUE

TOTALSUPPLY -0
TOTALDEMAND = 0
OPEN (UNIT,1)
K=0
INPUT=I
OUTPUT = 6
NOD = 1100
NAD = 6000
MXC = 2000

C READ IN THE ORIGINAL NETWORK ARCS, COSTS, CAPACITIES,
C SUPPLIES AND DEMANDS

CALL SHARE
1 (M,S,HEAD,TAIL,C,CP,X,CPX,P,DP,IT,U,NSA,ISA,A,BIGI,
2 MAXC, ISUP, IPRT, NR,
3 INPUT,OUTPUT,NOD,NAD,MXC)

D(0) = M-S
I1-
DO 70 J=1,S

SUPPLY(J) = X(J)
70 CONTINUE

DO 71 J.S+1,M
DEMAND(J-S,0) - 1 °X(J)
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71 CONTINUE
TOTAL SUPPLY - ISUP
TOTALDEMAND = ISUP

C INITIALIZE COST ARRAY FOR FINEST LEVEL
DO 997 1 = S+1,M

DO 998 J - HEAD(I), HEAD(I+1)-1
COST(TAIL(J),I-S,0) = REAL(C(J))

998 CONTINUE
997 CONTINUE

CLOSE (UNIT = 1)

10 CONTINUE
C START CLOCK

CALL CPUTIME(ATIMEACODE)
103 FORMAT (' START TIME: ',F10.0,' START CODE: ',13)
104 FORMAT ( END CODE: ',F1O.0,' END CODE: ',13)

C COARSEN UNTIL THERE IS ONLY ONE COARSE DEMAND NODE
CALL COARSEN
DO 500 J - 1,S

FLOW(J,NODE(1)) = REAL(SUPPLY(J))
500 CONTINUE

109 FORMAT (' TIME TO COARSEN: ', F10.0, 'MICROSECONDS')

CALL CPUTIME(CSETIME,CSECODE)

199 CONTINUE

DO 940 I - 1,D(0)-2°*K+1,2**K
CALL INTERP(I)

940 CONTINUE
K = K-1

201 FORMAT (1X, 5F6.0)

C NR IS THE NUMBER OF RELAXATION SWEEPS, USUALLY 1.
C MR IS THE NUMBER OF DEMAND NODES IN THE SUBPROBLEMS BEING
C DE-CYCLED.

CALL CPUTIME(TEMPTIMEACODE)
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IF (K.LE.KMAX-2) THEN
MR-2

C IF COMPLETE RELAXATION IS DESIRED, UNCOMMENT THE NEXT LINE
C211 CONTINUE

MR - 2*MR
LP = 1

221 CONTINUE
DO 231 I - 1, MR

DN(I) - NODE(LP+(I-1)*(2°*K))
231 CONTINUE

CALL RELAX (S, MR, DN, FLOW, CPRIME,K)
LP = LP +MR*(2**K)

IF (LP.LT.D(0)) GO TO 221
C F COMPLETE RELAXATION IS DESIRED, UNCOMMENT THE NEXT LINE
C IF (MR.LT.D(K)) GOTO 211

CALL CPUTIME(TIMING(3,K),ACODE)
TIMING(3,K) = TIMING(3,K) - TEMPTIME

ENDIF
3 FORMAT (5(13,15))

KK = K

C PERFORM A W CYCLE FROM THIS POINT
DO 950 LOOP = KK,KMAX-1

CALL WCOARSE(KK)
K = K+l

950 CONTINUE
960 CONTINUE

DO 965 I = 1,D(0)-2**(K-1),2-*K
CALL INTERP(Q)

965 CONTINUE
K =K - I

IF (K.GT.KK) GO TO 960
CALL CPUTIME(TIMING(1 ,K),ACODE)
TIMING(1 ,K) = TIMING(1,K) - TEMPTIME

2 FORMAT (8F6.0)
IF (K .GT. 0) GOTO 199

C STOP CLOCK
CALL CPUTIME(BTIMEBCODE)
DO 146 I=1,S

DO 127 J = 1,D(0)
BCOST(K) = BCOST(K) + NINT(FLOW(I,J)*COST(I,J,0))
OUTFLOW(I) = OUTFLOW(I)+FLOW(I,J)

127 CONTINUE
146 CONTINUE

PRINT 109, CSETIME-ATIME
105 FORMAT (' ELAPSED CPU TIME: ',F10.0, * MICROSECONDS.')

PRINT 105, BTIME-ATIME
106 FORMAT (' TOTAL COST:', 119)
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PRINT, TOTAL COST:', BCOST(O)
PRINT

111 FORMAT (43H0 FROM TO FLOW COST DEMAND
112 FORMAT (3X,13,2X,14,3X,15,8X, F5.0,5X,14)

WRITE (22,111)
DO 113 J - 1,M

FLOWIN(J) - 0
DO 1141 = 1,S

FLOWJN(J) = FLOWIN(J)+FLOW(I,J)
IF (FLOW(I,J).GT.0) WRITE (22,112)

& I, J, FLOW(I,J), COST(IJ,0),DEMAND(J,0)
114 CONTINUE

IF (FLOWIN(J).NE.DEMAND(J,0)) PRINT -, 'INFEASIBLE.
& DEMAND NOT MET AT NODE', J

113 CONTINUE
WRITE (6,-)
WRITE (6,-) ('SOURCE: ',K, 'TOTAL FLOW: , OUTFLOW(K),

& K=1,S)
STOP

END
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SUBROUTINE WCOARSE(KK)

C THIS SUBROUTINE WILL PERFORM A WEIGHTED COARSENING ON THE
C DOWN SLOPE OF A VEE CYCLE. DEMAND IS ALREADY COARSENED BY
C THE INITIAL UNWEIGHTED COARSENING. COST IS WEIGHTED BY THE
C AMOUNT OF FLOW ON THE COMPONENT FINER LEVEL ARCS. FLOW ON
C THE FINER ARCS IS ADDED TO DETERMINE FLOW ON THE COARSE ARC

INTEGER I,J,KK,D1,D2
INCLUDE 'COMMON BLOCK A'
INCLUDE 'STRUCT BLOCK A'

INCR = 2**K

DO 100 I = 1,D(0)-INCR+1,2*INCR
D1 = NODE(I)
D2 = NODE(I+INCR)
DEMAND(DI ,K+I) - DEMAND(D1 ,K) + DEMAND (D2,K)
DO 110 J = 1,S

C DEMAND WEIGHTED FLOW IS IMPLEMENTED HERE
CPRIME (J,D1,K+I) = (DEMAND(D1,K)

1 *CPRIME(J,D1,K) + DEMAND(D2,K)
2 °CPRIME(J,D2,K))
3 /REAL(DEMAND(D1,K+I))

FLOW(J,D1)=FLOW(J,D1)+FLOW(J,D2)
IF (FLOW(J,D1).LT.0) THEN

PRINT , 'ERROR-NEGATIVE FLOW, KK: ',KK,K,I
PRINT -, FLOW(J,D1), FLOW(J,D2)
PRINT , 'ERROR DETECTED IN S/R WCOARSE'
STOP

ENDIF
FLOW(J,D2) = 0

110 CONTINUE
100 CONTINUE

RETURN
END
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SUBROUTINE RELAX(S, M, DN, FLOW, CPRIMEK)
LOGICAL FINISHED, FOUND, CYCLE
INTEGER TOP, FLOW(50,1 100),

I PRED(1100), VISITED(1100), DN(1100),
2 STACK(1100), NODETYPE, S, M, CURRENT

REAL CPRIME(50, 1100,0:10)

100 CONTINUE
CURRENT - DN(M)
CYCLE - FALSE.
FINISHED - .FALSE.
NODETYPE = 1

DO 200 I = 1,M
VISITED(DN(I)+S) - 0
PRED(DN(I)+S) - 0
STACK(I) - 0

200 CONTINUE
DO 210 1 - 1,S

VISITED(I) - 0
PRED(I) - 0

210 CONTINUE
VISITED(CURRENT+S) = 1
TOP m0

1 CONTINUE
C CONDUCT A DEPTH FIRST SEARCH TO IDENTIFY CYCLE

C EXAMINE ARCS COMING OFF CURRENT NODE. IF ANY NODES WITH C LOWER
DFNUMBER ARE ADJACENT, THEN THERE IS A CYCLE.

IF (NODETYPE.EQ.1) THEN
1=1
FOUND - .FALSE.

10 CONTINUE
IF (FLOW(I,CURRENT).GT.0) THEN

IF (VISITED(I).EQ.0) THEN
FOUND = .TRUE.
PRED(I) = CURRENT
VISITED(I) - VISITED(CURRENT+S)+1
TOP - TOP+1
STACK(TOP) = CURRENT
CURRENT - I
NODETYPE - 2

ELSEIF (VISITED(I).LT.VISITED(CURRENT+S)-1)
& THEN

CYCLE =.TRUE.
CALL REMOVE (1, CURRENT, PRED, FLOW,

& CPRIME, NODETYPEKS)
ENDIF

ENDIF
I a 8+1
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IF ((I.LE.S).AND.(.NOT. FOUND)) GOTO 10
ELSE

I11
FOUND = .FALSE.

20 CONTINUE
IF (FLOW(CURRENT,DN(I)).GT.0) THEN

IF (VISITED(DN(I)+S).EQ.0) THEN
FOUND = .TRUE.
PRED(DN(I)+S) = CURRENT
VISITED(DN(I)+S) =

& VISITED(CURRENT)+1
TOP = TOP+I
STACK(TOP) = CURRENT
CURRENT = DN(I)
NODETYPE = 1

ELSE
IF (VISITED(DN(I)+S).LT.

& VISITED(CURRENT)-1) THEN
CYCLE - .TRUE.
CALL REMOVE (DN(I), CURRENT,

& PRED, FLOW, CPRIME, NODETYPE,
& K, S)

ENDIF
ENDIF

ENDIF
I = 1+1

IF ((I.LE.M).AND.(.NOT. FOUND)) GOTO 20
ENDIF

IF (CYCLE) GOTO 100
IF (.NOT.FOUND) THEN

IF (TOP.GT.0) THEN
CURRENT = STACK(TOP)
NODETYPE = 3-NODETYPE
TOP - TOP - 1

ELSE
FINISHED = .TRUE.

ENDIF
ENDIF

IF (.NOT. FINISHED) GOTO 1
RETURN
END
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SUBROUTINE REMOVE (1, CURRENT, PRED, FLOW, CPRIME,
& NODETYPEK,S)
INTEGER CYCLE(1 00),IN,CRNT

1 ,J, CURRENT, PRED(1100),S
2 ,FLOW(50,1 100), NODETYPE,K, DELTA, NTYPE
REAL CPRIME(50,1 100,0:1 0),CW
NTVPE = NODETYPE
CRNT = CURRENT
CYCLE(1) -CRNT
IN = 1

10 CONTINUE
IN = IN+1
IF (NTYPE.EQ.1) CYCLE(IN) = PRED(CRNT+S)
IF (NTYPE.EQ.2) CYCLE(IN) = PRED(CRNT)
NTYPE = 3-NTVPE
CRNT = CYCLE(IN)

IF ((CVCLE(IN).NE.I).OR.(NTVPE.EQ.NODETYPE)) GO TO 10
IF (NODETYPE.EQ.1) THEN

CW = CPRIME(CYCLE(IN),CYCLE(1 ),K)-CPRIM E(CYCLE(IN) ,CYCLE(QN-1 ),K)
DO 20 ~J - 2,IN-2,2

CW - CW-CPRIME(CYCLE(J),CYCLE(J-1 ),K)+
& CPRIME (CYCLE(J),CYCLE(J+1 ),K)

20 CONTINUE
ELSE

CW = CPRIME(CYCLE(IN-1), CYCLE(IN),K) -

& CPRIME(CYCLE(1 ),CYCLE(QN),K)
DO 30 J = 2,IN-2,2

CW = CW+CPRIME(CYCLE(J-1),CYCLE(J),K)-
& CPRIME(CYCLE(J+1 ),CYCLE(J),K)

30 CONTINUE
ENDIF
IF (CW.LT.0.0) THEN

C COMPUTE DELTA FLOW IN A CLOCKWISE TRAVERSAL
IF (NODETYPE.EQ.l) THEN

DELTA = FLOW(CYCLE(2),CYCLE(1))
DO40 J =4,IN,2

IF (FLOW(CYCLE(J), CYCLE(J-1 )).LT. DELTA)
& DELTA -FLOW(CYCLE(J), CYCLE(J-1))

40 CONTINUE
FLOW(CY-LE(IN),CYCLE(1)) - FLOW(CYCLE(IN), CYCLE(1 ))+DELTA
FLOW(CYCLE(IN),CYCLE(IN-1)) -

& FLOW(CYCLE(IN),CYCLE(IN-1 ))-DELTA
DO 50 J = 2,IN-2,2

FLOW(CYCLE(J),CYCLE(J-1)) =FLOW(CYCLE(J),

& CYCLE(J-1)) -DELTA
FLOW(CYCLE(J),CYCLE(J+1')) FLOW(CVCLE(J),

& CYCLE(J+ 1)) +i DELTA
50 CONTINUE

ELSE
DELTA - FLOW'CYCLE(1),CYCLE(IN))
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DO 60 J = 3,IN-1,2
IF (FLOW(CYCLE(J),CYCLE(J-1 )).LT. DELTA)

& DELTA -- FLOW(CYCLE(J),CYCLE(J-1))
60 CONTINUE

FLOW(CYCLE(1), CYCLE(IN)) - FLOW(CYCLE(1),
& CYCLE(IN) - DELTA

FLOW(CYCLE(1), CYCLE(2)) = FLOW(CYCLE(1 ),CYCLE(2))
& + DELTA

DO 70 J = 3,IN-1.2
FLOW(CYCLE(J),CYCLE(J-1))=

& FLOW(CYCLE(J),CYCLE(J-1)) - DELTA
FLOW(CYCLE(J),CYCLE(J.41)) =

& FLOW(CYCLE(J),CYCLE(J+1)) + DELTA 70
CONTINUE

ENDIF
ELSE

C COMPUTE DELTA FLOW IN A COUNTERCLOCKWISE TRAVERSAL
IF (NODETYPE.EQ.1) THEN

DELTA = FLOW(CYCLE(IN),CYCLE(1))
DO 45 J = 2,IN-2,2

IF (FLOW(CYCLE(J), CYCLE(J+1 )).LT.DELTA)
& DELTA = FLOW(CYCLE(J), CYCLE(J+1))

45 CONTINUE
FLOW(CYCLE(IN),CYCLE(1)) = FLOW(CYCLE(IN),

& CYCLE(1)) - DELTA
FLOW(CYCLE(IN),CYCLE(IN-1))=

& FLOW1CYCLE(IN),CYCLE(IN-1 ))4-DELTA
DO 55 J = 2,IN-2,2

FLOW(CYCLE(J),CYCLE(J-1)) =FLQW(CYCLE(J),

& CYCLE(J-1)) +DELTA
FLOW(CYCLE(J),CYCLE(J+1)) =FLOW(CYCLE(J),

& CYCLE(J+1)) - DELTA
55 CONTINUE

ELSE
DELTA = FLOW(CYCLE(1 ),CYCLE(2))
DO065 J = 3,IN-1.2

IF (FLOW(CYCLE(J) ,CYCLE(J+1 )).LT.DELTA)
& DELTA - FLOW(CYCLE(J),CYCLE(J+1))

65 CONTINUE
FLOW(CYCLE(1), CYCLE(IN)) =FLOW(CYCLE(1),

& CVCLE(IN)) + DELTA
FLOW(CYCLE(1), CYCLE(2)) =FLOW(CYCLE(1),

& CYCLE(2)) - DELTA
DO 75 J -3,IN-1,2

FLOW(CYCLE(J),CYCLE(J-1))=
& FLOW(CYCLE(J),CYCLE(J-1)) + DELTA

FLOW(CYCLE(J),CYCLE(J+1)) -
& FLOW(CYCLE(J),CYCLE(J+ 1)) - DELTA

75 CONTINUE
ENDIF
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ENDIF
RETURN
END
SUBROUTINE INTEAP (INNODE)

INCLUDE COMMON BLOCK A'

INCLUDE STRUCT BLOCK A'

REAL DIFF(50), TD
INTEGER FLOWIN(50), FLOWOUT(50), RS(5O), UDi ,UD2

INTEGER 1, J, JJ ,D1,.02, IN, TJ, JOINT(50), KM, INNODE

C COMMON /RELXJ RS, UDI, UD2

KM - K-i
Dl =NODE(INNODE)
D2 = NODE(INNODE+2**KM)
DO 100 J -HEAD(S+D1 ),HEAD(S+D1 +1)-i

RS(TAIL(J)) - FLOW(TAIL(J),D1)
FLOWIN(TAIL-(J)) = FLOW(TAIL(J),DI)

100 CONTINUE
UD1 = DEMANEU(D1 -KM)
UD2= DEMAND(D2,KM)
IN= 1
J =1
JJ - 1

C FIRST, SEE IF ANY SUPPLIERS FEED ONLY ONE FINE NODE

DO 115 J -HEAD(S+D1),HEAD(S+D1+l)-1
IF (CPRIME(TAIL(J),D1,KM).GE.INFINITY-10) THEN

UD2 =UD2 - RS(TAIL(J))
FLOW(TAIL(J),D2) - RS(T.AIL(J))
IF (FLOW(TAIL(J),fl2).LT.0) THEN

PRINT*,'ERROR -- NEGATIVE FLOW! FLOW IS',
& FLOW(TAIL(J),D2), '!:',KI

PRINT *,'ERROR DETECTED IN SIR INTERP'
STOP

ENDIF
RS(TAIL(J)) = RS(TAIL(J))-UD2

ELSEIF (CPRIME(TAIL(J),D2,KM).GE.INFINITY - 10) THEN
UDi UDI - RS(TAIL(J))
FLOW(TAIL(J),DI) = RS(TAIL(J))
IF (FLOW(TAIL(J),D1 ).LT.0.0)THEN

PRINT -, ERROR -- NEGATIVE FLOWI FLOW IS',
& FLOW(TAIL(J),D1), 'K: ,K,I

PRINT *,'ERROR DETECTED IN S/R INTERP'
STOP
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ENDIF
RS(TAIL(J)) - RSfrAIL(J))-UO1

ELSE
JOINT(JJ) - TAIL(J)
JJ - JJ+l

ENDIF
115 CONTINUE

JJ- JJ-l

C NOW WORK ON DIVIDING SHARED FLOWS

DO 150J - 1,JJ
D!FF(J) - ABS(CPRIME(JOINT(J),D1 ,KM)

& -CPRIME(JOINT(J),D2,KM))
150 CONTINUE
C SORT SUPPLY NODES BY INCREASING DIFFERENCE IN SHIPPING COSTS

DO 160 J= 1,S-1
DO 170IN -J+1,S

IF (DIFF(IN).GT.DIFF(J)) THEN
TJ -JOINT(IN)

TD -DIFF(IN)

JOINT(IN) - JOINT(J)
DIFF(IN) =DIFF(J)

JOINT(J) =TJ

DIFF(J) - TO
ELSEIF (DIFF(IN).EO.DIFF(J)) THEN

IF (MIN(CPRIME(IN,DI ,KM) OPRIM E(IN, D2,KM)).GT.
& MIN(CPRIME(J,D1 ,KM),CPRIME(J,D2,KM))) THEN

TJ =JOINT(IN)

TD =DIFF(IN)

JOINT(IN) - JOINT(J)
DIFF(IN) =DIFF(J)

JOINT(J) =TJ

DIFF(J) - DJ
ENDIF

ENDIF
170 CONTINUE
160 CONTINUE
C DISTRIBUTE THE AVAILABLE SUPPLIES TO MEET DEMANDS

J-1
IF (JJ.GT.0) THEN

200 CONTINUE
IF(CPRIME(JOINT(J),D1 ,KM).LT.CPRIME(JOINT(J),D2,KM)) THEN

IF (RS(JOINT(J)).GT.UD1) THEN
RS(JOINT(J)) - RS(JOINT(J)) - UD1
FLOW(JOINT(J),D1) - UDi
IF (FLOW(JOINT(J),DI ).LT.0)THEN

PRINT *, 'ERROR -- NEGATIVE FLOW! FLOW IS',
& FLOW(JOINT(J),D1),'K: ',K,I

PRINT -, 'ERROR DETECTED IN S/R INTERP'
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STOP
ENDIF
UDI - 0

ELSE
UDI - UDI - RS(JOINT(J))
FLOW(JOINT(J),D1) - RS(JOINT(J))
IF (FLOW(JOINT(J),D ).LT.O)THEN
PRINT*, 'ERROR -- NEGATIVE FLOW1 FLOW IS %

& FLOW(JOINT(J),D1),'K: ',K,I
PRINT' 'ERROR DETECTED IN S/A INTERP'
STOP

ENDIF
RS(JOINT(J)) - 0

ENDIF
IF (RS(JOINT(J)).GT.UD2) THEN

RS(JOINT(J)) -- RS(JOINT(J)) - UD2
FLOW(JOINT(J),02) - UD2
IF (FLOW(JOINT(J) ,D2).LT.0)THEN

PRINT' %'ERROR -- NEGATIVE FLOW1 FLOW IS',
& FLOW(JOINT(J),D2),'K: ',KI

PRINT' %'ERROR DETECTED IN SIR INTERP'
STOP

ENDIF
UD2m 0

ELSE
UD2 = UD2 - RS(JOINT(J))
FLOW(JOINT(J),D2) - RS(JOINT(J))
IF (FLOW(JOINT(J),D2).LT.0)THEN

PRINT *,'ERROR -- NEGATIVE FLOW? FLOW IS',
& FLOW(JOINT(J),D2),'K: ',K,I

PRINT'*,'ERROR DETECTED IN SIR INTERP'
STOP

ENDIF
RS(JOINT(J)) - 0

ENDIF
ELSE

IF (RS(JOINT(J)).GT.UD2) THEN
RS(JOINT(J)) - RS(JOINT(J)) - UD2
FLOW(JOINT(J),D2) - UD2
IF (FLOW(JOINT(J),D2).LT.0)THEN

PRINT'*,* ERROR -- NEGATIVE FLOW? FLOW IS',
& FLOW(JOINT(J),D2),'K: ',K,I

PRINT*, 'ERROR DETECTED IN SIR INTERP'
STOP

ENDIF
UD2 - 0

ELSE
UD2 - UD2 - RS(JOINT(J))
FLOW(JOINT(J),D2) - RS(JOINT(J))
IF (FLOW(JOINT(J), D2).LT.0)THEN
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PRINT'*,'ERROR -- NEGATIVE FLOW! FLOW IS'
& FLOW`(JOINT(J),D2),'K: '.K,

PRINT',,'ERROR DETECTED IN S/R INTERP'
STOP

ENDIF
RS(JOINT(J)) -0
ENDIF
IF (RS(JOINT(J)).GT.UD1) THEN

RS(JOINT(J)) - RS(JOINT(J)) - UD1
FLOW(JOINT(J),D1) - UDI
IF (FLOW(JOINT(J),DI ).LT.O)THEN

PRINT',,'ERROR -- NEGATIVE FLOM! FLOW IS,
& FLOW(JOINT(J),Dl),'K: ,K,I

PRINT*, 'ERROR DETECTED IN S/R INTERP'
STOP

ENDIF
UDi- 0

ELSE
UDI -- UDI - RS(JOINT(J))
FLOW(JOINT(J),DI) -RS(JOINT(J))
IF (FLOW(JOINT(J).DI ).LT,0)THEN

PRINT *,'ERROR -- NEGATIVE FLOWI FLOW IS',
& FLOW(JOINT(J),D1),*K: ',K,I

PRINT e,'ERROR DETECTED IN S/R INTERP'
STOP

ENDIF
RS(JOINT(J)) -0

ENDIF
ENDIF

SAVEX(J.DI) - FLOW(J,Dl)
SAVEX(J.D2) -FLOW(J,D2)
J-J+1

IF (J.LE.JJ) GO TO 200
ENDIF
RETURN
END
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SUBROUTINE COARSEN

INTEGER I,J,L,DMIN, ZERO, START, STOP, TEMP,INCRNN,
& SUPNODE,DMNDNODEONE,II. Dl, D2, INCR2, TC(50,1100)
INCLUDE 'COMMON BLOCK A'

C COMPUTE C PRIMED VALUES. IT IS ASSUMED THAT SUPPLY NODE S
C IS CONNECTED TO EVERY DEMAND NODE.
C C PRIMED WILL BE EQUAL TO THE ORIGINAL COST MINUS THE COST
C OF SHIPPING TO THE SAME DEMAND NODE FROM SUPPLY NODE S.
482 FORMAT (2H 1 ,2X,13,2XF10.0)
463 FORMAT (2H 2,2X,13,2X,F10.0)

DO 46€0 J - 1 ,D(0)
DO 450 I 1 1,S-1

CPRIME(I,J,0) = COST(I,J,0) - COST(S,J,0)
IF (COST(I,J,0).EQ.INFINITY) CPRIME(I,J,0) = RINF
TC(I,J) - CPRIME(I,J,0)*DEMAND(J,0)

450 CONTINUE
CPRIME (S,J,0) = 0.0

460 CONT'INUE
L=1
START - I
STOP - D(0)

C SORT VERTICES IN ASCENDING ORDER BASED ON DISTANCE FROM
C EACH SUPPLY POINT IN TURN USING SHELL SORT

NN=STOP
100 CONTINUE

INCR - NN/2
25 CONTINUE

DO 35 I - START+INCR,STOP
J-I-INCR

38 CONTINUE
IF (TC(LNODE(J)).GT.TC(L,NODE(J+INCR)))

& THEN
TEMP - NODE(J+INCR)
NODE(J+INCR) - NODE(J)
NODE(J) - TEMP
J=J-INCR

ELSE
J-0

ENDIF
IF (J.GE.START) GOTO 38

35 CONTINUE
INCR - INCR/2

IF (INCR.GT.0) GOTO 25
IF (STOP LT. D(0)) THEN

START - STOP + 1
STOP - MINO(D(0),STOP + NN)

ELSE
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START - 1
STOP - D(0)/(2*L)
NN-STOP
L-L+1

ENDIF
IF (L .LE. S-1) GOT0100
INCR a 1

M9 CONTINUE
KM - K
K-K+1
INCR2 - INCR
INCR - INCR*2
DO 50 I-1i,D(0)-INCR2,INCR

DI - NODE(I)
D2 - NODE(I+INCR2)
DEMAND(DI ,K) - DEMAND(D1 ,KM)

& +DEMAND(D2,KM)
DO 55 J-1,S

CPRIME(J,D1 .11 - (CPRIME(J,D1 ,KM)+CPRIME(J,D2,KM))/2.O
55 CONTINUE
50 CONTINUE

O(K)-(D(KM)+1 )/2
IF (D(K).GT.1) GOTO 999
KMAX=K
RETURN
END
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C FILE COMMON BLOCK A

INTEGER D(0:10),S,DEMAND(1100,O0:1O), SUPPLY(50), K, CP(6000),
& NODE(1 100), ANSX (7000), CCOST, KMAX, NO,
& TOTALSUPPLY, TOTAL._DEMAND, INFINITY,
& STEP, PVTILM, PVT2LM, PVT1CT(O:I0), PVT2CT(O:1O),
& INFEAS, M, N(0:10), FLOW(50,1100)
& ,SAVEX(50,1 100) A

REAL COST (50,1100,0:10), CPRIME(50,1 100,0:10). RINF

DOUBLE PRECISION SOLVETIME(0:1 0),STRTIME(0 :10), STPTIME(0 :10)

COMMON NARSi
& D, S, DEMAND, SUPPLY, K, COST, INFINITY, STPTIME,STRTIME.
& SOLVETIME, NODE, TOTALSUPPLY, TOTAL_-DEMAND, ANSX, CCOST, & STEP,

PVTILM, PVT2LM, PVT1CT, PVT2CT, INFEAS, M, N,CP,KMAX,
& CPRIME, FLOW, RINF, SAVEX, NO

C FILE STRUCT BLOCK A

INTEGER HEAD(1 100), TAIL(6000), C(6000)

COMMON /STRUCTURES/ HEAD,TAIL,C
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